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MINIMUM-PHASE* 

BY 

T. J. ULRYCH** and M. LASSERRE** 

ABSTRACT 

The concept of minimum-phase is reviewed from basic considerations. The 
question of the physical realizability of minimum and non-minimum-phase sys- 
tems, and the condition required for the determination of the phase response 
of a system from the amplitude response, are discussed. It is shown that physi- 
cal realizability does not imply minimum-phase. 

INTRODUCTION 

The term, minimum-phase, appears with increasing regularity in geo- 
physical literature. It is a concept which has been borrowed from the 
field of electrical network analysis, where it was first introduced by Bode 
(1943). We have found that geophysicists are generally less familiar 
with this concept than are electrical engineers. Such questions as: “Are 
non-minimum-phase systems physically realizable?” or “Under what 
conditions may the phase response of a filter be deduced from its ampli- 
tude response?“, are often asked. 

We feel it is therefore appropriate to review the concept of minimum- 
phase from the frequency and time domain points of view, and to illus- 
trate our discussion by considering an elementary filtering circuit. 

THEORY 

In the discussion to follow we will limit ourselves to a consideration of 
systems composed of lumped, passive components; in other words, we 
consider systems with inductance, capacitance and resistance only. 

Pole-Zero Representation of a Tmnsfer Function 

The transfer function of a system, T (s) is defined as the transform 
of the output divided by the transform of the input, and may be repre- 
sented as the ratio of two polynomials. In general s is a complex number, 
,+io. In the particular case where the Fourier transform is used, 
-=a and T(s) becomes T(i,), where o is the angular frequency. 

T(i”) may be composed of real and imaginary parts: 

T(io) =G(o) +iB(u) =A(o)e i#(o) 

where A(a) = VG2(o) + B2 (a) is the amplitude response of the system 
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and r,+(w) = tan-‘- is t,he phase response of the system. 
G(m) 

The representation of a transfer function in the complex S plane is a 
very useful one and we will use it in our discussion. 

As an illus’,-,ltion of this representation, let us consider the low-pass 
1 

filter (Fig. 1) for which T(s) = ~- where T = CR is the’ time con- 
1+ Sr 

-c 
T 

FIG. 1-A low-pass filter. 

1 
stant in seconds. Since T(s) becomes infinite at s =m: - T’ we say that 

T(s) has a pole at this value of s. Further, since the numerator of 
T(s) can never be zero, the transfer function of a low-pass filter does 
not possess zeros in the S plane. 

The S plane representation for this low-pass filter (Fig. 2) depicts the 
pole-zero configuration of the transfer function and may be used to 
determine the behaviour of A (“,) and + (“,). 

FIG. 2.--S plane representation of a low-pass filter. 

Expressing the vector AB in its polar form, and since T(S) = 5, 
AB 
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we have T(s) = G. 
1 

Hence, A(,) behaves as p and d(o) as - 0. 

In other words, lim A(,) = [A(,) lmax and 
W-+0 

n 
,‘zm A(o) = o. Similarly, i20 +(U) = o and lim +(U) = - 2 o+m 
We know from experience that a low-pass filter does have these char- 
acteristics. 

The response of the low-pass filter to an impulsive input may be con- ’ 
veniently obtained by returning to the definition of the transfer function. 

G(s) 1 
T(s) r-z- 

G(s) 1+s7 

where E,(s) and E,(s) are transforms of the output and input, respect- 
ively. In the case of an impulsive input, 

1 
E,(s) = 1 and E,(s) = - 

1+ sr 

E,(s) is by definition the transform of the output e,,(t); thus 

1 
e,(t) is the inverse transform of ~ or 

1+ sr 

e,(t) = 1 exp 
( ) 

- 4 for t>o 
7 7 ! 

In other words, the output in time is an exponentially decaying transient. 

At this point-we wish to show that the transfer function of a system 9 
with a pole in the right-half plane (Fig. 3) is not physically realizable. 

Proceeding as before, 

iw 

x pole 

-I 

x c 

FIG. 3.-S plane representation of a pole in the right-half plane 
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8, :, 

1 
E,(s) = - 

IL-9 

and 
1 

e,(t) = - -eexp t 
0 

for t>o 
T 7 

We see therefore that the output increases indefiniteI;. It is clear 
that such behavior is not physically possible and hence we may general- 
ize and state that the transfer function of a physically realizable system 
does not have poles in the right-half of the complex plane. 

Let us now use the S plane representations of systems whose transfer 
functions have both a pole and a zero: to describe the concept pf mini- 
mum-phase. Since we need not consider poles in the right-half plane 
the possible pole-zero configurations for such systems are shown in 
figure 4. 

, iw IiW 

I 2 

A,,“, : *t 
PC “(w” 2 

v,,lu,: e2- 6, V2P,(W)’ .$* - 8, 

A, ,w, :A*,ol 

FIG. 4.-The pole-zero configuration for two circuits having the same amplitude 
response but different phase response. 

It is clear from the preceding discussion and figure 4 that both circuits 
with the S plane configurations shown have the same amplitude response, 
but different phase response. In fact the circuit with all its poles and 
zeros in the left-half plane has the lesser phase response. 

In general terms, if a number of circuits have the same amplitude 
response, that circuit which has all the poles and zeros of its transfer 
function in the left-half complex plane, is the minimum-phase circuit. 
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CAUSALITY AND PHYSICAL REALIZABILITY 

It is obvious that all physically realizable systems must be causal. In 
other words their output cannot precede their input. 

We have found that the question, “Are non-minimum-phase filters 
physically realizable?” is often asked. We will therefore develop two 
conditions which must be satisfied for causality to hold, and we will then 
apply them to a non-minimum-phase filter. ! 

In order to develop these conditions we introduce the impulse response 1 
of a system I(t). I(t) is real and may be written as 

I(t) = E(t) + O(t) (1) ! 

where E(t) and O(t) are the even and odd parts, respectively. 

T(L) and I(t) are related through the Fourier transform 

T(L) = 1 

J’ 

+m +m 
-i& 

I(t) e dt = -! 

.I 

E(t) cos ot dt 
277 77 

-cc 0 

i 

s 

+m 
-- O(t) sinot dt 

77 
0 

(2) 

Also, from our previous discussion 

T(L) = G(U) + iB(o) (3) ; 

It follows from (2) and (3) that G(o) is the Fourier transform of 
E(t) and B(“) is the Fourier transform of O(t). 

We will choose to write equation (1) as > 

I(t) = E(t) + as(t) + O(t) (4) 

where S(t) is the delta function or the unit impulse and a is a constant 
which may be zero. s(t) is an even function and we have extracted it 
from the even part of equation (1). The reason for this choice will 
become clear later. 

Since for physically realizable systems there can be no output before 
there is an input, 

I(t) = 0 for t < 0 (5) 

We define a function 
sgnt= I+1 t>o 

t-1 t<o 
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1 
The Fourier transform of sgn t may be easily shown to be - 

iorr 
(Bracewell 1965). 

From equations (4) and (5) we may write 

O(t) = sgn t E(t) (6) 

[The reason for our choice of equation (4) is now clear. as(t) has 
a value only at t = o, where sgn t i,s not defined. Consequently, a8 (t) 
is required so that circuits with impulsive behaviour at t = o are in- 
cluded in our causality conditions.] 

Substituting equation (6) into equation (4) and taking the Fourier 
transform of both sides 

1 
T(L) = G(U) + _ * G(w) + a Where * implies 

iar convolution 

Hence Condition I. 

+@J 
B(w) = 1 I 

G(w’) do’ t 
- 

7r o’--lo 
--m 

(7) 

(where we take the Cauchy principal value of the integral.) 

We may also write 

E(t) = sgn t O(t) 

1 
Hence T (i,) = _ *i B(o) + iB(o) + a 

i0w 

+ a + i B(w) 

tl’his integral formulation is known as the Hilbert transform. 

- 
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Condition II, 

1 
G(o) = a - - 

n 
(8) 

Conditions I and II may be derived by contour integration (Tuttle 
1958, Papoulis 1962) and it may be shown that the constant a is in fact 
G(m). 

iw 

x pole 
0 I.,0 

FIG. 5.-Pole-zero diagram of a non-minimumphase system. 

Let us apply the causality conditions to a non-minimum-phase circuit. 
Following our definition of minimum-phase, the transfer function of 
such a system may be represented in the S plane as shown in figure 5. 
This pole-zero pattern actually corresponds to the all-pass filter shown 
in figure 6. 

For this circuit 
FIG. 6.pAn a&pass filter. 

1-B 
T(s) ~=,p 

1+sr 
(9) 
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Hence, separating T(s) into its real and imaginary parts: 

1 --WV 
G(w) = - 

1+&w 
and 

- 207 
B(w) = - 

lf”? 

We may determine the impulse response for this system from equation 
(9) using the Laplace transform. 

2 
T(s) = -l+- 

l+ST 

Hence 

I(t) = -s(t) +;exp 

and is shown in figure 7. 

t 

FIG. T.--The impulse response of the all-pass filter. 

The constant a in equation (8) is therefore -1. (Note that G(m) is 
also -1). 

We have two conditions to test. 

1 +m 

s =-s 

+m 
G(o’) da’ 1 - 1 + 2/ (l+ti’V) do’ 

I. - _- 
ii to--o 77 co-0 

-cc --m 
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Co’+i/7) (0’ -i/r) (IO’- 0) Co’+i/7) (0’ -i/r) (IO’- 0) 
-cc -cc 

We solve both integrals by the Cauchy principal value theorem. The 
first integral may be easily shown to be zero. The second integral is 
equal to 2A X residues at poles in upper half of complex plane plus 
vi 2 residues on real axis. 

Consequently the second integral is 

2ni (27) A(2) 
+ 

A(2i) (i/7 -0) ?x(o+i/,) (o-i/7) 

- 207 
= B(o) 

1+OW 

Condition I is therefore satisfied. 
II. We must find the value of 

+m 
-I- 1 

w 
.I’ 

- 2”‘~ dw’ 

(l+w’v) (*,‘- “>) 
--m 

Proceeding as above, we have the principal value 

24 A (2,) 
-l- + 

7i7(i/7-w) 7~7(10+i/7)(0- i/7) 

2 
z-1+ 

l+“W 

1 - 0272 

= 1+ A2 
= G (01 

Condition II is also satisfied. 

We may state therefore that causality does not imply minimum-phase. 
The poles and zeros of figure 5 correspond to a physically realizable 
filter which is not a minimum-phase system. 

Thus, the only condition which physically realizable passive systems 
must satisfy is that their transfer functions do not possess poles in the 
right-half of the complex plane. 
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I 
Why, then, are we concerned with minimum-phase systems at all? 

We will answer this question only in part here. 

T(L) :Y G(,) + i B(U) 

= A(,) exp icn(w) 
Hence 

log,. T(L) I log,, A(,) + iO(cjl) 

If we identify log, A(,) with GC,) 

and a(,) with B(,) 

we may write, using Condition II 

for a causal system. We may therefore determine the phase response 
from the amplitude response, a procedure often desirable. 

It may easily be shown that a system with a pole in the right-half plane 
violates the causality conditions (as it must, since we have already seen 
that such systems are not physically realizable). 

But log, T(L) has a pole in the right-half plane for every zero of 
T(L)) in the right-half plane. Consequently log,. T(L) will violate the 
causality conditions unless we specify that all the zeros of T(L) be con- 
fined to the left-half plane. In other words, for equation (10) to hold, 
T(L) must correspond to a minimum-phase system. 

Minimum phase is also related to stability of digital filters and decon- 
volution. We refer the reader to excellent discussions of these topics by 
Treitcl and Robinson (1964), Rice (1962), Robinson (1966), and Ford 
and Hearne (1966). 

SUMMARY 

We have shown t,hat the condition of causality, in other words that 
the output does not precede the input, implies that the transfer function 
of a physically realizable passive system does not possess poles in the 
right-half of the complex plane. This is not sufficient to specify a min- 
imum-phase system which also must not possess zeros in the right-half 
plane. 

We have also shown that the phase response of a system may be 
obtained from a knowledge of the amplitude response only for a minimum- 
phase system. 
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We have reviewed these matters here because we believe it is of im- 
portance that the concept of minimum-phase be dealt with from basic 
considerations in the geophysical literature. 

For additional discussion we refer the reader to Bode (1945) and 
Papoulis (1962). 
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