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ABSTRAIX 

The concept of multichannel Wiener de- 
convolution is investigated, The algorithm 
for this multichannel filter is outlined, and 
the problem associated with the “se of 
identical input channel data is discussed. 
Since source wavelet estimates determine 
the multichannel filter input, a brief com- 
parison of techniques used in wavelet esti- 
mation is presented. Methods for deter- 
mining the optimum length of a multichan- 
nel filter are also mentioned. 

channels. The matrix f(r) contains ele. 
ments ff,(t) which operate on the jth 
input channel to give a contribution to the 
ith output channel. The matrix f(t) i-e- 
presents the autocorrelation matrix for the 
input process at lag t, while the matrix 
%(t) represents the cross-correlation mat- 
?ix of the input process with the desired 
output process at lag t. The complete 
mathematical definitions of f(t), r(t) and 
_p(t) are given by Treitel (1970). Using 
the assumption of ergodicity, the values 
of f(c) and g(t) are given by the follow- 
ing-relations-for the case of k input chan- 
nels. 

The following short note outlines an ap- 
plication of digital multi-channel Wiener 
filtering to the problem of seismic decon- 
volution. Methods and applications of mul- 
tichannel filtering have been outlined by 
Treitel (1370). Several Fortran programs 
for multichannel data analysis have been 
given in a book by Robinson (1967b). Also, 
a comparison between multichannel and 
single channel seismic deconvolution has 
ken given by Davies and Mercado (1968). gw 

Treitel (1370) gives a derivation of the 
equations which define the multichannel 
filter coefficients. These coefficients, f (t), 
satisfy the following system of normal 
equations for a filter of length m. 

Where(x,(r), x2(t), , s(t)) repre- 
sents the inputs on each of the k channels 
at time t, and (Y,(t), y2(t). , Y,(t)) re- 
presents the desired output values on each 
of the t output channels at time t. In the 
example given here, k = 2 and a = 1. 

In the above formulation, f(t), z(t) and 
g(t) all represent matrices. The sizes 
of these matrices are determined by the 
number of input channels and output 

The fact that f(t) is in the form of a 
Toeplitz matrix allowed Wiggins and Rob. 
inson (1365) to obtain a recursive solution 
to the equations defining a multichannel 
Wiener filter. Their recursive solution is 
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Fig. 1. This flaw diagram of the recursive solution to the multichannei Wiener filter 
follows the diagram given by Wigginr and Robinson (1965) 05 we,, OS o ioter description 
given by Robinson (1967b). The polynomials o,,,Czl and b.,,,rl represent z tranrformr of 
the prediction error and hindsight error sequences. The sizes of the matrix coefficientr a‘ 
these L transforms ore determined by the number of input a,nd ourput chonnelr. In the 
~onventian used here far the filter coefficients, f,,,(k), k denotes the time index and the 
subscript m refers to the iteration number in the rewriive process. 

essentially an extension of the Levinson 
algorithm from the single channel case. A 
flow diagram of this solution, which fol- 
lows the diagram giver? in Wiggins and 
Robinson (1965) and the description in 
Robinson (1967b3 is shown in Figure I. 
By using this method, an inverse filter for 
the seismic source may be designed once 
the source wavelet estimates for each in- 
put trace are obtained. Convolution of 
this multichannel inverse filter with the 
input seismic traces yields an estimate of 
the impulse response for a layered earth. 
However, the source wavelet estimates 
which are the multichannel input to this 
program must not be identical. As point- 
ed out by Robinson (1967b,3, initialization 
of the recursive process for the filter design 
requires that f(O) = g(O) z-‘(O) , where 
go) is the filier matrix at r=O, g(O) is 

the crosscorrelation matrix of the input 
with the desired output at zero lag. and 
5-l (0) is the inverse of the autocorrelation 
matrix at zero lag. If all inputs to the 
filter are identical then ~(0) is a matrix 
with equal elements and its inverse does 
not exist. This problem of the autocor- 
relation matrix being singular has been 
discussed by Galbraith and Wiggins (1968). 

In the synthetic example shown in Fig- 
ure 2, the use of the Wiener multichannel 
filter for deconvolution was studied under 
ideal conditions. A seismic source wavelet 
was syntbesized by using a z transform of 
the form (-l.lO+z)~~1.75+~)‘” and remov- 
ing the average from the resulting time 
series. In order to make the autocorrela- 
tion matrix nonsingular, a small amount 
of white noise was added to the wavelet 
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to give slightly different source wavelets 
for different. input channels. Multiplica. 
tion of the diagonal elements of ~(0) by a 
number slightly greater than one is an 
equivalent method of adding white noise 
to the source wavelet estimate. The use 
of slightly different gains on the filter 
input channels represents a third method of 
avoiding singularities in the autocorrela- 
tion matrix. The source wavelets used in 
this example were convolved with a given 
impulse response to yield synthetic seismic 
traces. When the actual source wavelets 
are used in the design of an inverse filter, 
the convolution of this filter with the syn- 
thetic traces yields a deconvolved trace 
which almost duplicates the impulse res- 
ponse. The length of the filter was chosen 
to be one less than the length of the 
source wavelet. The multichannel filter 
gives the correct solution to our problem. 
This behaviour of the filter agrees with 
the statement made by Treitel (1975) con- 
cerning the performance of the multichan- 
nel filter. Treitel points out that the error 
for the multichannel filter becomes smaller 
as the number of filter points increases 
and the error decreases to zero whenever 
M = z\n,d 1, where M is the filter length, 
K is the number of input channels and N 
is the input length. It should be noted 

Fig. 2. This synthetic example exhibits the 
performance of the multichannel Wiener de- 
~onwlution filter under ideal conditions. When 
convolved with the synthetic tmces, a multi- 
channel filter of length 14 gives o decanvolved 
trace which almost duplicates the impulse re- 
spo”se. 

that in the single channel case, where K 
= 1, the Wiener filter length must become 
infinite in order to obtain ideal perform- 
ance. Also, it should be pointed out that 
numerical problems with the multichannel 
filter may arise if the filter length is 
taken to be much larger than the length 
of the input. 

Although the results of these idealized 
tests of the multichannel Wiener filter are 
encouraging, the test was conducted under 
the unrealistic assumption that the source 
wavelets were known. It should be reali- 
zed that the performance of this decon- 
volution method is only as good as the 
source estimation. 

There are several methods of estimating 
the seismic source wavelets in a single 
channel manner. These wavelet estimates 
for each trace provide the inputs used in 
the design of a multichannel deconvolution 
filter. One of the well known methods of 
source wavelet estimation is the Wold.Kol. 
mogorov factorlzation technique. The de- 
tails of this method are described in an 
important paper by Robinson (l%?a). In 
using this technique, two assumptions are 
made. 

1. The source wavelet is assumed to be 
minimum delay. 
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2. The impulse response for the seismic 
trace is assumed to be a purely random 
or white noise series. This condition re 
sults in the source autocorrelation being 
identical to the trace autocorrelation. 

Since the impulse response is not a true 
white noise series, the problem in using 
Wold-Kolmogorov factorization lies in esti- 
mating the source autocorrelation from 
the trace autocorrelation. Window func. 
tions may be used to suppress contribu- 
tions to the trace autocorrelation at lags 
much larger than the suspected length of 
the source wavelet. 

A technique which also involves using 
the trace autocorrelation as an approxima- 
tion to the source autocorrelation is the 
Wiener-Levinson double inverse method. In 
this method, the estimated source autw 
correlation values are substituted into the 
normal equations in order to determine an 
inverse filter. This inverse filter is itself 
inverted by again using the normal equa- 
tions to obtain a source wavelet estimate. 
In using the Wiener-Letinson double in- 
verse method, the minimum delay assump- 
tion was also made since the desired filter 
outputs were zero delay spikes. 

By combining theory and experiment, 
Ricker (1953) examined the form of seis- 
mic wavelets caused by a dynamite explo- 
sion, The use of the Ricker wavelet is wide- 
spread, and Rice (1962) deconvolved seismic 
traces by using the Wiener filter and the 
assumption that the source wavelets were 
symetric Ricker wavelets. However, Rice 
admits that problems do arise from lack of 
information about the source wavelets. In 
marine seismology, there is additional 
wavelet information due to the direct ob- 
servation of the source pulse. 

A method which does not require the 
assumption of a minimum delay wavelet 
or the assumption that the impulse rew 
ponse be a white noise process is the meth- 
od of homomorphic deconvolution. This 
technique has recently been applied by 
“lrych (1971) and Ulyrch et al (1972) as 
a means of estimating seismic wavelets for 
earthquakes. Homomorphic deconvolution 
may also hold considerable promise for esti- 
mating source wavelets for exploration 
data. 

Figure 3 shows an example of the sowce 
estimates for a synthetic seismic trace us- 
ing Wold-Kolmogorov factorization, the 
Wiener-Levinson double inverse method, 
and the method of homomorphic decon- 
volution. 

The trace used in this test was syn. 
thesized by convolving the impulse res- 
ponse of Figure 2 with the mixed delay 
source wavelet shown in Figure 3. (This 
Source wavelet is the wavelet of Figure 2 
with no white noise added). The auto- 
correlation used in the Wold-Kolmogorov 
and Wiener.Levinson estimates consists of 
the trace autocorrelation multiplied by a 
Parzen window of length 20. We see that 
although the trace autocorrelation is a 
good estimate of the source wavelet auto. 
correlation, the minimum delay assumption 
gives both wavelet estimates a different 
character from that of the actual source 
wavelet. 

The homomorphic deconvolution estimate 
was obtained by short pass filtering the 
trace cepstrum. The details of cepstrum 
calculations have been outlined by Ulrych 
(19711. In this case the trace cepstrum 
was calculated after using a weighting 
factor of 0.98 on the trace. Since the 
source cepstrum cannot be completely sep- 
arated from the trace cepstrum by a short 
pass filter, the third lobe of the home. 
morphic deconvolution estimate is not 
quite the same as that of the actual wave- 
let. 

Using the trace of Figure 3 and the first 
trace of Figure 2, homomorphic deconvolu- 
tion estimates were used in applying multi- 
channel deconvolution. A truncated aver- 
age of the estimates is shown in Figure 4. 
In this case, using the average of the wave- 
let estimates as input and multiplying the 
diagonal of ~(0) by 1.05 provides a better 
deconvolution than using the individual 
sowce wavelet estimates as input. The 
resulting deconvolution is shown for the 
cases where the desired output is a spike 
at delays of 2 units and 5 units respective- 
ly. These spiking positions correspond to 
the first peak and first trough of the esti- 
mated wavelets. Optimum spiking posi- 
tions can be monitored by use of Simp. 
son’s sideways recursion which is described 
by Wiggins and Robinson (1965). 
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Fig. 3. A comparison of source wovelet 
estimates found by the Weld-Kolmogorov 
factarizatian method (WKFACT), the 
Wiener-Levinson double inverse method, 
and the method of homomorphic decanvo- 
I”ti0”. The zero amplitude positions for 
the estimated w~velets are given by the 
axe* positiom. 
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fig. 4. Multichannel deconvolutian re- 
ulting from the use of source wwelet erti- 
mation is shown for the cases where the 
desired O”~PU,S are spiker at delays of two 
units and five units. 
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In conclusion, it would seem that multi- 
channel deconvolution involves two basic 
problems. The first problem involves the 
determination of multichannel inputs by 
source wavelet estimation. As pointed out 
previously, the filter inputs must be suffi- 
ciently different in order to avoid problems 
in defining the inverse of r(O). The sec- 
ond problem involves desigcing the proper 
multichannel inverse filter. A criterion 
for determining the length of the multi- 
channel Wiener has been given by Treitel 
(1975). Numerical difficulties with recur- 
sive solutions to these deconvolution prob- 
lems sometimes arise, and it is advisable to 
monitor the normalized mean square error 
as a function of filter length in order to 
pick a desirable filter length. Fryer et al 
(1973) determine the optimum inverse filter 
length for multichannel time series by 
using the final prediction error statistics 
of autoregressive models. This may re- 
present an alternative approach to the 
problem of determining inverse filter 
lengths. 

The purpose of this note has been to out- 
line certain aspects of multichannel de- 
convolution which may not be immediately 
apparent. Hopefully the ideas presented 
in this note will encourage further investi- 
gations of multichannel seismic deconvolu- 
tion and source wavelet estimation. 
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