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ABSTRACT 

me compuration 0f.W synthetic seismograms ‘or an iso~rop- 
ic verrically inhomogeneous medium using a technique original- 
ly developed by Al&sew and Mikhailenko is presented. An 
erpliclt finite-difference S”,“tion fur the rlastodynamic WaYC 
equauon dcscrihing the propagation of SH~waves is determined 
after tile dimensionality “‘the WaYe equation is reduced ,hruugh 
the use of a finhe Hankel transform. Our kmnular are presented 
in a form that ii suitable for direct computer application. To 
facilitate the drvelopment of EUCh a computer CO& the rinite- 
difference integral-transform method is brictly reviewed and a 
stability crircrion is determined. In addirion, some practical 
guidelines. based on our experience with computer programs 
rmplnying the Al&see”-Mikhrilenko method ,AMM). are pm 
sen,ed. This is *one in order 1” enhance tile f”t”ria, w,ue Of rile 
paper which should be considered as an introduction 10 the 
AMM numerical technique, as it is becoming increasingly popu- 
lar among practicing seismologists due to the wailabiliry of con- 
tinuing advances in computer power. In our paper a” PI point 
torque sO”rCr and a h”ril”n,a, puint force. both located a1 the 
surface. are used for the cumpumion of synrheric seismograms. 
The n”mrrical models prcsrnted illustrate tile nature of WaYe 
propagation for a particular model comaining two thin low- 
velocity layers in a homogeneous hill‘.space. B”lh horizontal 
traces and YerfiCal traces WSP) are computed for Ihe mu&l. and 
the applicability of the merhad. when compared fo other altema~ 
tive sewnic modelling techniques. is examined. 

1. INTRODUCTION 

The Alekseev-Mikhailenko method (AMM) (Alekseev 
and Mikhailenko, 1980: Mikhailenko and Korneev, 1984; 
Mikhailenko, 1984, 1985) used in this paper is closely 
related to the first in a series of synthetic-seismogram 
techniques developed for the modelling of various types 
of geological structures. The method is a hybrid tech- 
nique combining finite-difference methods with finite- 
integral-transform methods to obtain a solution of high 
numerical accuracy. 

The algorithm described in the paper is for SII-waves 
propagating in a vertically inhomogeneous medium. The 
problem is reduced to a finite-difference problem in the 

vertical spatial dimension and time by removing the radi- 
al coordinate, in a cylindrical coordinate system, through 
the use of a finite Hankel transform. A highly accurate 
numerical solution to the problem is provided with which 
other, faster but less accurate, ray methods may be com- 
pared. This is especially useful when trying tu obtain 
approximate solutions in certain areas, such as in the 
vicinity of a caustic in a vertically inhomogeneous medi- 
um, or near a critical point in a plane-layered mediunl 
where the reflected and head waves interfere. 

The method is usually faster than most difference pro.. 
grams in two spatial dimensions with the benefit that grid 
dispersion may be significantly reduced (to within 2 or 3 
percent) by utilizing a band-limited source pulse and 
establishing the number of terms to adequately approxi- 
mate the infinite series which comprises the inverse finite 
Hankel transform. In addition, out-of-plane spreading is 
always included which is not the case in most finite-dif- 
ference schemes for two-dimensional geologicill models. 
The price paid for this is that lateral inhomogeneities can- 
not be introduced. Fortunately. more sophisticated AMM 
three-dimensional techniques have been developed for 
modelling laterally inhomogeneous structures and analyz- 
ing diffracted events (Mikhailenko and Komeev, 19X4). 

For reflection-type shooting, where source-receiver 
offsets are small, and in ascertaining it highly accurate 
vertical seismic profile (VSP) response, the method dis- 
cussed in this paper is the most useful one we know of, at 
least in the initial modelling stages. It is becoming evi- 
dent, as field techniques for the acquisition of VSP data 
improve, that borehole parameters are as important as the 
shooting pattern in the seismic response obtained (B&h 
and Lee, 19X4). Therefore. because of the simplicity of 
the technique presented in this paper compared to others 
in the AMM class, it is the most likely initial candidate 
for the incorporation of the necessary correction terms to 
account for physical processes in the borehole which 
affect the seismic distrubance recorded there. 

The AMM technique employed in this paper for the 
computation of SH-waves may also be applied to the 
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numerical modelling of the more complicated P-SV-wave 
field, where both longitudinal and shear modes of wave 
propagation exist. Such an application of the AMM tech- 
nique has already been presented by, among others, the 
authors of this paper (Pascoe et al., 1988). Since the 
mathematical description of the SH-wave field is simpler 
than that governing the P-SV problem, this paper can also 
serve as an introduction to the above-mentioned paper. 
This possibility, prompted by the constructive sugges- 
tions of the reviewers of the earlier paper, resulted in 
placing a greater emphasis in the present paper on the for- 
mal exposition of the theory and the practical computa- 
tional guidelines useful in the efficient numerical imple- 
mentation of the AMM technique. 

2. THE ALEKSEEV-MIKHAILENKO METHOD (AMM) 

The equation of motion for an SH-wave in cylindrical 
coordinates (r,$,z), due to a point torque source located at 
the origin in an isotropic vertically inhomogeneous half- 
space is (Alekseev and Mikhailenko, 1980; Mikhailenko 
and Korneev, 1984): 

P’(Z) aP + & + a’u -+Idu_L, 
Pi?) ai a;’ a2 rar 2 (1) 

The particle-displacement vector, ii(r, z), is equal to 
u(t-,z)@~, where Cm is a unit vector perpendicular to the 
plane of incidence. The quantities p(z) and p(z) are the 
density and Lamk’s coefficient, respectively. The shear- 
wave velocity v(z) is related to ~(2) by p(z) = p(z)v*(;). 
The primes indicate differentiation with respect to z. 
Equation (I) is subject to the initial conditions 

ul =g =o. (2) 
‘=‘I ,=,> 

A torque source located on the surface at (r,z) = (0.0) 
imposes the boundary condition (Alekseev and 
Mikhailenko, 1980): 

fi I) d 6i 1-j ~O~l~~,l=-Z&. 
which is equivalent to 

au 
a3 

( =-&,4[“i:!]. 
--u 

(4) 

with p0 being the value of Lami’s coefficient at the free 
surface and f(r) being the time dependence of the source 
pulse which contains an appropriate multiplicative ampli- 
tude constant assuring maintenance of proper dimension- 
ality. The problem under consideration is fully specified 
by equation (I) subject to the initial conditions (2) and 
the boundary condition (4). 

The dimensionality of equation (1) may be reduced by 
applymg a finite first-order Hankel transform (Sneddon, 
1972) given by 

Y 
S(k,.z,t)=~~(r,z,f)J,(k;r)rdr. O<r<a, (5) 

0 

the inverse of which is 

_ S(kl,z,t)J,(k;r) 
u(r, z,t)= ‘c 

2 ;=, [J,ik, dl’ 
(:6) 

The quantities ki are the roots of the transcendental equa- 
tion J,(k;a) = 0, where I = a is the upper bound of the 
closed interval [O,a]. 

In accordance with the basic properties of hyperbolic 
differential equations (e.g., Jeffreys and Jeffreys, 1972, p. 
53 I), an additional constraint u 1, = y = 0 may be imposed 
on the solution of the equation of motion (1) without 
intluencing the seismic response in the region of interest 
for a given finite time interval provided that a is large 
enough. This is due to the fact that the imposition of the 
boundary condition ~1, = L( = 0 is equivalent to the intro- 
duction of a totally reflecting surface at r = a. Thus, if 
this reflecting surface is set far enough from the source, 
the seismic response, in the region where the receivers 
are located, will not be influenced by any spurious reflec- 
tions from the fictitious interface at a within the specified 
time window. 

Upon application of the Hake1 transform the equation 
of motion has the form 

- k2,p(z)S -p(z)+, 

subject to the transformed initial conditions 

SI as 
/ =I, = y$ 

=o, (2’) 
I =o 

and transformed boundary condition 

as _ f(l)k, 
a; :=,, 4v’, 

(4’) 

In addition to the reflections from the fictitious inter- 
face at r = a, there is a need to minimize reflections from 
the lower grid boundary, whose depth must be finite 
when the probem is solved by numerical methods. This 
may be accomplished by having this boundary sufficient- 
ly deep so that the reflections from it do not influence the 
seismic record for the time window being considered, OT 
by introducing a damping term [y(zFJularl into the equa- 
tion of motion. These spurious reflections remain but. 
because they are heavily damped, their amplitudes will be 
negligible. For this case, the equation of motion (I’) 
becomes 
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$ ME - k:Mz)S=p(z)$+y(z)$f (I”) [ 1 
where r(z) = 0 in the region of interest and increases lin- 
early with depth over several wavelengths to the lower 
grid boundary. A third possibility of eliminating spurious 
reflections from the lower grid boundary is to incorporate 
into the solution an absorbing boundary at some depth z8 
(Clayton and Engquist, 1977). 

In what follows, equation (l”), where the damping 
term has been introduced, will be used to determine the 
SH displacement. The transformed problem [( 1”). (2’) and 
(4’)] must be solved at a finite number of roots of the 
equation J,(kp) = 0, and this is accomplished quite effi- 
ciently by employing an explicit finite-difference scheme. 
The spatial grid chosen must be sufficiently fine so as to 
minimize grid dispersion, which causes a delaying and 
broadening of the signal so that the pulse develops an 
oscillatory tail (Alekseev and Mikhailenko, 1980). In the 
results presented in this paper about 40 grid points per 
wavelength were required to reproduce adequately the 
pulse employed. 

The determination of a finite-difference analogue for 
equation (I”) is facilitated through the “se of a relation 
given by Mitchell (1969, pp. 23.25), which has: 

&[P+]l = 
I = : ,,, 

a”, s’,,., -(4, + am+,,s:+ %+,L 
(AZ )I 

+ O(Az )’ 

(7) 

and the indices j (l<jq and m(llm<M) refer to time and 
space, respectively. The upper bounds J and M arc related 
to the specified time interval, T, and the depth, Z, to the 
grid boundary by JAt = T and MAz = Z. An explicit finite- 
difference analogue to (1”) is given by 

anIs:_, 
/ 

- (a”#+ a,+,)S “,+ %+,C+, 

(AZ )’ 
- k:pmS: 

if I 
s., - 5;,+ s;’ 

(At)’ +‘, 

s’:’ - s’,’ (9) 
= P”, 2At 

In this form it is clear that one can solve explicitly for 
the unknown quantity S:” at time step (i+l) in terms of 
known values of S, at the previous time steps j and (i-l), 
as the rewriting of equation (9) indicates: 

ia “,+ am+,) 2p, 
(AZ)’ - m 

+k’km Sf,,+ 1 
j a “,+I Sm+, 

ibz)’ 

-[& +]s:‘. 
(10) 

To implement the boundary condition at the free surface 
(m = O), it is assumed that at the spatial grid points, 0, 1 
and 2, the medium is homogeneous with y = 0, p = p0 and 
Y = Y,, at these points. As a consequence, equation (10) is 
simplified considerably in that region. Upon the introduc- 
tion of a centered difference analogue on the grid point 
m = 0 for the boundary condition (4’) an expression for 
si, is obtained. Substituting this expression into equa- 
tion (10) for m = 0 results in the following explicit ana- 
logue: 

d+’ = 2”; @Lx s;- [ 1 (AZ)’ 
r 1 

I 2v$Af)’ 

(AZ)’ 
+ k; v;(~)’ - 2 

J 

5’; 

_ sQ-’ - 
k;fU)(Af)’ (11) 
2np,(Azz) 

The seismic source pulse f(t) used in the computer pro- 
grams was that of an exponentially damped sine function 
expressed as 

fit) = Q,sin[w, (I - t)lexp 

{-pb”];}, --Z<f<%. (1-a 

Here, % is the predominant angular frequency, d a damp- 
ing factor, 2~ the approximate width of the pulse. and Qo 
an amplitude containing a proper dimensionality con- 
stant. 

In order to determine the seismic response for O<KT, 
OSzcZ and O%&, it is necessary to evaluate S(k,,r,t) for 
each root ki over the z-f grid (OSm<M, O<j<J). The 
response at any given depth z and source-receiver dis- 
tance r is found from the inverse finite transform given 
by the truncated series: 

N Sik,z,t)J,(kir) 
uir, z,t) = gy 

i= I [J;(k,a)l’ 

(13) 
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in which the relation J*(k,a) = Jfl (k;a) = Jo(kia) 
(Abramowitz and Stegun, 1968, p. 361) has been used. In 
solving for S(ki,z,r), equations (10) and (11) are used in 
conjunction with the initial conditions, equation (2’). The 
error introduced by truncation of the series will be dis- 
cussed shortly. 

Although the finite-difference analogues and the for- 
mulae for the series which must be summed to perform 
the inverse finite Hankel transform from the domain of 
wavenumber, k, to that of the spatial dimension, r, are 
given by equations (IO), (11) and (13), there are some 
practical questions which should be addressed before’ 
beginning any numerical implementations: 
(1) What should be the grid spacing in the vertical (z) 

direction? 
(2) How many terms are necessary to approximate ade- 

quately the infinite series in the inverse summation? 
Regarding question (l), it is first convenient and prob- 

ably more instructive to speak in terms of wavelengths 
(WL) rather than metres, and periods (T) instead of sec- 
onds. The predominant wavelength, &,, will be defined by 
the relation l/h, = f&, where f. is the predominant fre- 
quency (wg = 27’&) of the source pulse and Y is the mini- 
mum shear-wave velocity encountered in the model under 
consideration. All other spatial dimensions will be 
defined relative to the predominant wavelength. As an 
example, a model with a predominant frequency of 10 Hz 
and minimum shear-wave velocity of 2500 m/s, results in 
a predominant wavelength of X,, = 250 tn. Thus, if the 
model consists of a 2000-m layer overlying a half-space, 
the layer would, by the definition given above, be 8.0 WL 
thick, even if the layer displayed a velocity variation in 
the interval between the free surface and the top of the 
half-space. Also, an offset of 4000 m would translate to 
an offset of 16.0 WL. This definition of the predominant 
wavelength is chosen to be mathematically convenient 
and may differ from a more practical “physical” wave- 
length of the seismic pulse inferred from field data. 

Numerical experimentation was required to ascertain 
the optimum number of grid points per wavelength. Much 
of this work was done by Professor B.G. Mikhailenko 
and his associates by comparing exact solutions with 
results obtained using the method discussed in this paper. 
It was their finding that for most applications 40 grid 
points per wavelength provided a sufficient accuracy of 
within 2 or 3 percent of the maximum amplitude in the 
synthetic trace. 

As a final note on this point, time will be referred to in 
terms of periods (T) rather than seconds. A period, like a 
wavelength, is defined in terms of the predominant fre- 
quency of the source pulse by the relation T=llf,. 

The number of terms which must be considered in the 
inverse transform summation to approximate adequately 
the infinite series [question (2)] is discussed in the paper 
of Martynov and Mikhailenko (1984) and will be repeat- 
ed here to keep this paper as self-contained as possible. 
As stated in the above-mentioned paper, the required 

number of terms in the series summation is related to the 
smoothness and duration of the source pulse fir) in the 
time domain [equation (12)]. The reason for this is that 
these two properties have a direct effect on the width of 
the spectrum F(w) in the frequency domain. F(w) is the 
Fourier time transform of f(t), which for equation (12) 
may be written analytically (apart from some multiplica- 
tive constant involving ‘T and Q,,) as: 

F(w) = 

sexp[ - $(I + w/w,)‘lsinh 
0 

(14) 

The spatial frequency (horizontal wavenumber), k, in a 
cylindrical coordinate system is related to the angular fre- 
quency, w, according to the following formula, k = w/v, 
where Y is the shear-wave velocity. It is then a sufficient 
condition to approximate the infinite inverse summation 
series by a finite number of terms which may be deter- 
mined by estimating an upper bound on w, say to,, 
beyond which the spectrum F(o) is essentially zero. After 
the determination of w,, the quantity k, may be obtained 
from the above relation. In the source pulse under consid- 
eration, the maximum value of F(w) occurs at o = o,,, at 
the predominant frequency. The width of F(w) in the fre- 
quency domain, i.e., where F(o) is large when compared 
with F(q,), depends on 0. The larger the value of o, the 
narrower the spectrum in the frequency domain and the 
longer the pulse duration in the time domain. In the time 
domain the duration of the pulse is approximately a/j@ In 
estimating, k. as k. = W./V, the velocity v is chosen to be 
the minimum shear-wave velocity encountered in the 
medium under consideration. With ki = E&z. where the & 
are obtained from the relation Jl(&) = 0, the following 
holds: 

From the above relation it can be seen that the number of 
terms which must be used in the inverse summation series 
increases linearly with (I, and, as the spectral width 
decreases with increasing values of cr, this results in 
fewer terms being required to approximate the series. For 
the pulse used in this paper, with IS= 4: o. = 2w, As 
&, =f&, where Y is the minimum shear-wave velocity in 
the medium, equation (16) becomes: 

~“=4lIa (17) 

where CI = aI& is a dimensionless quantity. For large val- 
ues of i, sj = ai (Abramowitz and Stegun, 1968), so that 
5 “= NZ and consequentlyN= 4~3,. N being the number 
of terms used in the inverse series to approximate the 
infinite series summation. 
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Because there is a possibility of unlimited amplifica- 
tion of errors by the finite-difference method for an arbi- 
trary choice of AZ and At, the stability criterion for the 
technique most be determined. The van Neumann condi- 
tion for stability can be applied because of the sepambili- 
ty of variables in the problem. In this method a harmonic 
decomposition of the error is made at grid points at a 
given time level. Following the procedure set out by 
Mitchell (1969, pp. 209-210), the inequality 

’ ki 
++z(At)‘< 1 (18) 

is obtained. This must be satisfied if the solution to the 
problem under consideration is to be stable. Since it is 
assumed that AZ has been chosen and the roots ki and 
ve1ocity.v are known, the inequality (18) serves essential- 
ly for the determination of the time step At. It should be 
noted that Y is the largest shear-wave velocity encoun- 
tered on the grid. 

~.NUMERICAL RESULTS 

In order to obtain a necessary verification of the results 
produced by our programs with those presented in the lit- 
erature, a particular model has been chosen for the case 
of W-waves discussed in this paper. The model used in 
the computation of synthetic seismograms for a vertically 
inhomogeneous medium is that presented by Kom and 
Milller (1983) in which two thin low-velocity layers rep- 
resenting coal seams are embedded in a homogeneous 
half-space (Figure 1, Table 1). In their paper, SH-waves 
are generated by a horizontal point force at the surface 
and the results confirmed by comparison with the reflec- 
tivity method (Fuchs and Miiller, 1971). Apart from a dif- 
ference in the time dependence of the source pulses, the 
results obtained in this paper match those in Figure 2 of 
Kom and Miiller, so that any further results obtained 
using the method described in the previous section were 
deemed to be accurate. 

The synthetic seismograms due to a horizontal point 
force at the surface differ from those due to a torque 
source at the surface in that the dependence of the source- 
wavelet amplitude on .the take-off angle of the ray at the 
source is removed. That is, if for a torque source the 
amplitude of a given ray is u = A sin&, where O. is the 
take-off angle of the ray at the surface, the amplitude for 
the same my due to a horizontal point force substituted 
for the torque source is u = A (Ben-Menahem and Singh, 
1981). 

The formal mathematical statement of the initial 
boundary-value problem for a horizontal point force is 
given in the Appendix for the sake of completeness. As 
the derivation of the finite-difference analogue and the 
implementation of the free-surface condition are essen- 
tially the same for both sources, only final formulae for 
this source type are presented in the Appendix. These for- 

Fig. 1. Velocity-depth structure of the medium. Two coal seams 
with shear-wave velocities of 0.33 WVT (666 m/s) and densities 
of 1.6 x 103 kg/m3 are set in a half-space whose velocity and 
density are 0.67 WLIT (1732 m/s) and 2.6 x 103 kg/m3, respec- 
tively. The depths of the coal seams are 6.90 WL (200 m) and 
6.625 WL (250 m). 

Layer Velocity Thickness Density 

1 1732 (0.67) 200 (6.900) 2.6x 103 
2 666 (0.33) 2(0.300) 1.6x lo3 
3 1732 (0.67) 50(1.725) 2.6 x 103 
4 666 (0.33) 2 (0.300) 1.6~103 

Half-space 1732(0.67) - 2.6~10~ 

Table 1. Parameters of the medium used in the computation of 
the synthetic seismograms in this paper: the unbracketed values 
(shear-wave velocity and thickness) are in m/s and m respective- 
ly while the bracketed values are in terms of wavelengths per 
period (WVT) and wavelengths (WL). A wavelength is related to 
the shear-wave velocity of the medium in which the source is 
located and the predominant frequency of the source pulse. 
Hence. for a velocity of 1732 m/s and a predominant frequency of 
60 Hz, as in the case here, 1 WL P 26.9 m. The density is given 
in kg/m3. 

mulae are given a form that allows them to be pro- 
grammed easily. 

For the numerical calculations, the coal-seam model 
(Figure 1, Table 1) involves layers each 2 m thick having 
a density of 1.6 x 103 kg/m3 and a shear-wave velocity of 
866 m/s embedded in a half-space of density 2.6 x 103 
kg/m3 and a shear-wave velocity of 1732 m/s. The coal 
seams are placed at depths of 200 m and 250 m. 
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In order to match the arrivals given in the paper of 
Kom and Miiller (1983). the predominant frequency of 
the time dependence of the forcefft) was taken as 60 Hz 
rather than 30 Hz as stated there. In the seismograms pre- 
sented here, source-receiver distances and depths are 
given in terms of wavelengths and time is given in terms 
of the predominant period. This arrangement makes it 
possible to give a much broader interpretation to any 
computed seismograms as the spatial dimensions of the 
medium and time scale in synthetic seismograms are 
directly linked to the parameters of wave propagation, 
i.e., to wavelength and period, respectively. With these 
changes the coal seams are at depths of 6.90 WL and 
8.625 WL. One set of 10 receivers is located on the sur- 
face of the half-space at receiver intervals of 0.862 WL. 
The corresponding synthetic seismograms are shown in 
Figures 2 and 3. For the vertical seismic profiles another 
set of 24 receivers at equal depth increments of 0.375 WL 
has been placed at a horizontal distance of 4.31 WL from 
the source located on the surface. The related VSP seis- 
mograms are shown in Figures 5 and 6. 

0.862 WL 

1.724 WL 

2.586 WL 

3.446 WL 

4.310 IIL 

5.172 WL 

6.034 UL 

In a surface profile one expects to detect the direct ray, 
primary seam reflections, interseam multiples, and multi- 
ples between the surface and the seams. As expected, the 
direct arrival A as well as the primary reflections B and 
C are quite evident in Figure 2. In order to identify the 
remaining arrivals without destroying the relative ampli- 

6.896 WL 

7.758 ta 

I I 
6.034 YL x A” 

I I 

I 

I I 1 , 
B.llSB YL I A” 

t , I 
1 1 ; 

7.768 “I. I 
\ , t 
, 1 \ 

8.820 YL I 

Fig. 2. Synthetic seismograms with receivers on the surface for 
a horizontal point force and the velocity-depth structure given in 
Table 1. A refers to the direct wave while Sand C indicate the pri- 
mary reflections from the two thin layers. 

6.620 WL 

I 6 C D E F 

I5 20 25 30 3.5 
m.e (PERIODS) 

Ffg. 3. The sane surface traces as in Figure 2 with the direct 
arrival removed so that other arrivals which have undergone mul- 
tiple reflections are enhanced. Identification of phases based on 
traveltimes is as follows: 

E-S, 
* 2 

.c-s, s,. 

0-s: S:,E-S: s: ,F-s4,,c-s~,s~2 

The subscripts on S indicate the layer of the ray segment while 
the superscript indicates the number of segments in the layers. 

tude relation, the direct ray has been windowed out and 
the later arrivals amplified by decreasing the scale as 
shown in Figure 3. The primary reflections B and C, 
interseam multiples D and E, and the secondary reflec- 
tions F and G have been identified and confirmed by 
matching traveltimes using standard my methods. 

There is a noticeable distortion of the original pulse 
shape in the primary reflections and later arrivals. This is 
due to the complex interference phenomena present in the 
wavelets which are reflected from, or transmitted 
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through, the very thin layers which represent the coal 
seams. 

Only the windowed (direct arrival removed) surface 
traces are presented in Figure 4 for the case of an SH 

torque source. The significant difference between these 
arrivals and those for the horizontal point force is the 
amplitude dependence of the arrival on the take-off angle 
go made by the ray with the z-axis. As previously men- 
tioned, Ben-Menahem and Singh (1981) showed that the 
amplitude of the disturbance is directly proportional to 
sin Ba for a point torque source, which is easily seen in 
the figure. 

From the vertical profiles given in Figures 5 and 6, the 
nature of the wave propagation is immediately evident. 
Energy may arrive at a particular depth either from above 
01 below. As seen in Figures 5 and 6, the direct arrival A 

represents the downgoing wave field, whereas arrivals B 

and C are reflections from each of the seams and repre- 
sent upward-travelling disturbances. The interseam multi- 

1.662 WL x d,-- L 

,724 UL x J$)-+------- 

1.566 WL x 

j.034 HL X 

3.896 WL X 

3.620 WL x 

BC D E F G 

15 20 25 30 3: 
TIME (PERIODS) 

Ffg. 4. Seismic traces with receivers located on the surface due 
to the torque source for the same coal model (Table 1) and the 
same otfsets as were used in Figures 2 and 3. The direct arrival 
has been removed and the identification of phases is the same 
as that given in the caption of Figure 3. 

pies are a result of the reflection labelled D. The primary 
reflection B from the uppermost coal seam is reflected 
once again at the free surface and propagates downward 
into the half-space as arrival H. The ease with which the 
nature of each event is visually determined in any set of 
seismograms along vertical profiles demonstrates how 
invaluable the VSP seismograms arc in the interpretation 
of seismic traces recorded on the surface, as the common- 
ly used traveltime curves are frequently misleading and 
inconclusive, especially in more complex geological 
structures. 
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Fig. 5. Synthetic seismograms due to a horizontal point-force 
source computed for a vertical profile at the source-receiver dis- 
tance of r= 4.1 WL in the coal-seam model (Table 1). The nature 
of each event can be directly inferred from the seismograms and 
checked against a more detailed phase identification obtained by 
ray methods and schematically shown in Figure 7. 
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4. CONCLUSION 

All the information necessary to develop a computer 
code for the computation of a total SH-wave field due to 
a point source located in a vertically inhomogeneous 
medium is presented. The resultant computer program 
can be used for the production of SH synthetic traces 
along horizontal or vertical profiles depending on the 
nature of the problem under investigation. We used the 
Alekseev-Mikhailenko method for the development of 
theoretical formulae for horizontal point-force and 
torque-type sources. Advantages of the method were dis- 
cussed in the text and demonstrated on the seismic traces 
presented in the paper. Included in the computed traces is 
the total wave field in which sane distinct arrivals such 
as reflections, multiples, and surface waves are easily rec- 
ognized. An additional advantage is the high numerical 
accuracy provided through the use of Hankel tansforms in 
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Fig. 6. A torque source equivalent of the VSP in Figure 5: see 
Figure 7 far identification of the individual arrivals. 

Flg. 7. A schematic of the rays which contribute to the VSP seis- 
mograms shown in Figures 5 and 6; these arrivals were deter- 
mined from travellimes computed using ray-tracing methods. 

reducing the dimensionality of the wave equation, there- 
by limiting grid dispersion. The application of this 
numerical method to vertical seismic profile studies was 
also demonstrated. Unless the VSP seismograms are 
used, some ray methods must still be employed to identi- 
fy particular arrivals seen in the horizontal profiles, and 
as mentioned in the Introduction, some form of correction 
term for borehole parameters should be introduced to 
obtain a more accurate synthetic. 
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APPENDIX 

The mathematical statement of the horizontal point 
force initial-boundary-value problem in a medium with 
azimuthal symmetry is formally given as 

with the boundary condition 

a!! 6( 6 

aZ so 
= - pt,, 

2m PO 
,=o 

C.42) 

and the initial conditions 

UI =du =o. 
,=o at,=o 

C.43) 

The pertinent finite Hankel forward and inverse pair 
used in reducing the dimensionality of the problem is 
given by 

a 

S(kj,z,t)=I~(r,~,f)Jg(kir)rdr 
0 

C.44) 

^ S(k j.z.0 Jo( k(r) 
u(r, T I) = -$g 

ISI [ J, (k ; a)l’ (A% 

as opposed to (5) and (6) which are valid for the torque 
sowce. The quantities ki in this case are the roots of the 
equation Jo(kp) = 0. 

Introducing the damping factor, T, to remove reflec- 
tions from the lower grid boundary as in the torque- 
source case, and introducing the finite-difference ana- 
logues for the partial second-order derivatives in z and 1, 
results in: 

(‘46) 

for m>O, and 

1 S,’ 

- si-’ - f(O(Alt) 
4w,( Ad 

(A7) 

for m = 0. The definitions of a, are given in the text, as 
are the stability criterion and method of determining the 
number of terms which must be considered to approxi- 
mate adequately the inverse finite Hankel transforms. 


