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GEOPHYSICAL ASPECTS OF WABAMUN SALT DISTRIBUTION IN SOUTHERN ALBERTA

N.L. AnpeErson', R.J. BrRown2 anD R.C. HiInNDs?

ABSTRACT

We have mapped the thickness of the Wabamun Group salts in
the Stettler area of southern Alberta from well-log data. Prominent
collapse features are seen to be associated with many of the edges
of these salt remnants suggesting that the salts were probably, at
one time, unitfermly distributed throughout much of southern
Alberta and subjected to extensive postdepositional dissolution.
The vriginal distribution of these salts and the timing and extent of
their dissolution is critically important to the explorationist for
several reasons: (1) structural traps can form where reservoir
facies are draped across sall temnants or collapse features, (2)
stratigraphic traps can form where reservoir facies were either
preferentially deposited or preserved in salt-dissolution lows:, (1)
reservoir facies can develop in high-cnergy environments like
topographic highs that are controlled by sali-dissolution edges or
remnants; (4} closure across Wabamun salt remnants can be misin-
terpreted as drape over a nonexistent reef, or can distort the drape
across an actual underlying Ledue Formation reef, or it may be
falsely indicative of deep-seated structure: and (5) Wabamun salts
can he erreneously interpreted as Nisku porosity on seismic data.

In this paper. an isopach mup of the Wabamun salts in the
Stettler area and a suite of geologic cross-sections are presented.
These data help 1o elucidate the timing and extent of the dissolu-
tion of these salis and to illustrate seme associuted potential trap-
ping mechanisms. In addition, seismic and gravity models are pre-
sented which indicate that these techniques can be used 1o advan-
tage in the mapping of salts in areas of partial removal.

INTRODUCTION

The regional work of Belyea (1964) and Meijer Drees
(1986), among others, shows that the Wabamun Group and
its equivalents (Figures | and 2} are present over a large
areal extent of the western Canada basin and that residual
Wabamun Group/Stettler Formation salts cover a censider-
able arca of southern Alberta. We have carried out a more

detailed mapping of Wabamun salt thickness in the Stettler
area of Alberta (Figures 2 and 3) from about 500 well logs
(the control points of Figure 3). We intend, in this paper, to
consider the present Wabamun salt distribution and any
collapse features associated with the dissolutional salt
edges to try to gain at least a preliminary understanding of
the original depositional salt distribution and how dissolu-
tion, or leaching, proceeded through time, In doing this, we
apply the simple principle that, over a dissolutional edge,
those overlying units that are undisturbed, i.e., exhibit no
collapse features, must have been deposited after cessation
of salt removal. In the present paper, we discuss several
possible salt-related effects that one might look for in seis-
mic and gravity data, but we defer to future publications
the presentation of real examples thereof.

The timing and the extent of salt leaching is important as
both structural and stratigraphic fraps can form as a resull.
For example, reservoir facies can be structurally ciosed
across salt remnants and, stratigraphically, could have been
either preferentially preserved or preferentially deposited
in dissolutional lows or highs. An understanding of the
overall salt history — deposition and dissolution — is also
important because of the risk of erroneous interpretation of
drape across a sall remnant as closure on an underlying
Leduc reef, or of salt itself as porosity within the Nisku
Formation, schematic examples of which are prescnted in
the next section.

Recent work on salt-dissolution features in Alberta
includes studies by Oliver and Cowper (1983) of salt
removal in the Rumsey area; Meijer Drees (1986) and
Anderson et al. (198%9a) on salts in western Canada gener-
ally; Hopkins (1987) on salt dissolution and subsidence at
the Bermry field; and Anderson et al. (1989b) on the explo-
ration-related effects of salt dissolution,
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WABAMUN GROLP SALTS

Geological overview

The type section for the Wabamun Group (Imperial Oil
Ltd., 1950} is located between the depths of 1748 and
1919 m (3735 and 6297 f1) in the Anglo Canadian
Wabamun Lake No. 1 (5-10-51-4W5) well, This 1s not
very close to our present study area (Figure 2) and so we
have used two wells that are closer {(Figure 2). 16-24-25-
13W4 and 7-11-24-15W4, shown in Figure 4. Of particular
interest is the observation that the thick Wabamun salts
present in the 16-24 well are absent in the 7-11 well.

The Wabarmun Group in the vicinity of the type section,
in the Wabamun Lake area of central Alberta, consists pre-
dominantly of limestone with dolomitic mottling and local
accurnulations of dolomite in the lower part. To the south-
southeast of the type section, there is a gradual change
from limestone to interbedded limestone and dolomite,
thence to dolomite and anhydrite with local halite in the
Stettler area. Wonfor and Andrichuk (1953) gave the name
Stettler Formation to the evaporite sequence; the overlying
green shale and fossiliferous limestone are known as the
Big Valley Formation (Figure |; Andrichuk and Wonfor,
1953).

The Wabamun Group in the study arca rests on the
Winterburn Group (Figure 1). The uppermost unit of the
Winterburn Group, the Graminia Formation, cannot be
mapped as a distinct unit throughout much of the study
area, Consequently. its equivalents are commonly included
in the lower part of the Stettler Formation (Belyea and
McLaren, 1957: Belyea, 1964). Where erosion has not
removed the overlying Mississippian strata. the Wabamun
Group is overlain by the Exshaw Formation; elsewhere by
the Lower Cretaccous.

Distribution of the Wabhamun Group salts

We use the term distribution here to imply not only
areal extent (i.e.. salt or no salt) but also thickness of salt.
For the Wabamun Group salt, this is shown in the salt
isopach map of Figure 3. Control valucs were determined
only for those wells in the study area for which caliper logs
are available and only one control point was calculated per
section. Superposed onto this map are the lines AA and BB
of the geologic cross-sections (Figure 5). These data illus-
trate that the Wabamun salts are laterally discontinuous and
that there is a direct correlation between structure at the top
of the Wabarmun and residual-salt thickness: the Wabamun
top is clearly draped across the thicker salts. These obser-
vations support the thesis that the Wabamun salts at one
time were more or less uniformly distributed throughout
the study area and that they subsequently were extensively
dissolved. Dissolution of these salts appears to have
occurred throughout Mesozoic and Cenoczoic time. The
evidence for this proposition is threefold:

(1) Wabamun salts have not been encountered along the
subcrop area of Figure 3 (except on a limited por-
tion thereof near Buffalo Lake where the salt units

themselves do not subcrop), implying some dissolu-
tion during the post-Mississippian and pre-
Cretaceous hiatuses;

(2) in places. Cretaceous strata drape across salt rem-
nants (Figure 5) implying some post-Cretaccous
dissolution; and

(3) present-day drainage patterns appear to correlate to
a considerable extent with the present-day edges of
the salt remnants (see the lakes in Figure 3). imply-
ing some dissotution in Holocene time.

In connection with (3) above, although we have a large
number of control points, we still need many more hefore
we can compile a definitive salt isopach map to compare
with drainage paticrns.

The Wabamun salts in the study area have been exten-
sively dissolved. The timing of this leaching and the distri-
bution of the residual bodies should be extremely signifi-
cant to the cxplorationist for a number of reasons:

(1} reservoir Tacies can be structurally closed over the
edge of residual salt bodies (Figure 6);

(2) reservoir facies can be structurally closed over a salt
remnant as 1 result of progressive leaching of salt
(Figure 7}

(3) reservoir facies can be stratigraphically trapped
where preferentially deposited in salt-dissolution
lows (Figure 8) or highs:

(4) reservair facies can be stratigraphically trapped
where preferentially preserved in a salt-dissolution
low (Figure 9%

(5) drape across & Wabamun salt remnant can be misin-
terpreted on scismic data as either drape across a
Leduc reef or as being indicative of basement struc-
ture (Figure 10);

(6) Wabamun salts can either enhance or degrade the
seismic signaturc of an underlying Leduc reef
(Figure 11); and

{7 low-velocity Wabamun salts can be misinterpreted
on seismic data as Nisku porosity (Figure 12).

In our continuing research, we intend to assemble a suite of
real examples of many or all of these effects.

Setismic MODELLING

Suites of one- and two-dimensional synthetic scismo-
grams wcre generated for selected wells in southern
Alberta. Below, both the modelling techniques and the
models themselves are briefly discussed. The GMA
Stratigraphic Modelling System software was used.

One-dimensional (1-D} modelling

Two sonic logs (Figure 4) were used 1o generate synthet-
ics, one of which penetrated a thick salt remnant {16-24),
the other of which encountered no salt (7-11). 1-I synthet-
ic seismograms were generated for cach of these logs using
two different zero-phase Ricker wavelets. The seismo-
grams are displayed (Figures 13 to 14) in both normal and
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Fig. 12. Schematic diagram showing how, on seismic data, the rel-
atively low-velocity Wabamun salts (~4200 m/s) can be misinter-
preted as parosity within the Nisku Formation.

reversed polarity for four different values of wavelet
“breadth” (Ricker, 1977, p. 93), or central period (20, 25,
30 and 35 ms).

In the Wabamun interval of the 16-24 well, the top and
the base of the salt {not shown in Figures 13 and 14) come
ahout one-third and two-thirds of the way through the
Wabamun interval. On the normal-polarity synthetics of
Figures 13 and 14, the top and base of the Wabamun salt
interval in the 16-24 well are manifested as a trough and a
peak, respectively. The peak at the base of the salt is seen
quite clearly at about 0.1 s for all four wavelets used.
However, the resolution of the salt top, at about 0.08 s,
degrades with increasing wavelet breadth (decreasing fre-
quency). At 20 ms the salt top trough is very sharp while at
35 ms it has totally merged with the negative lobe of the
Wabamun reflection peak.

In Figure 14, the effect of density has also been included
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in the synthetic traces. For the Wabamun salt, this has
increased resolution only slightly. However, for the Cairn
salt lower in the section, for which the density-fog anomaly
is much more pronounced, the modelled reflections stand
out significantly more clearly on Figure 14 (with density)
than on Figure 13. Thus, in general, when modelling salt-
bearing intervals, the effect of density should not arbitrari-
Iy be neglected. In Figure 15, a 1-D seismogram for the 7-
11 well 1s shown. This well encountered no Wabamun
Giroup salt. Although there are differences between Figures
13 and 15 for the Wabamun interval for all four wavelets,
these differcnees are clcarer and easier 1o resolve for a nar-
rower wavelet than for a broader one, generully speaking.

Two-dimensional (2-1)) modelling

The synthetic seismic signatures of wells containing salt
are often significantly different from those without salt. In
order to illustrate these differences, a 2-D sonic-log model
and corresponding synthetic scismic section (Figure 16}
were penerated, the latter using a 25-ms Ricker wavelel,
This synthetic seismic section illustrates two interesting
features:

{1) that zones of relatively thick salt can very likely be
visually differentiated from neighbouring zones
where saft dissolution has occurred, but where the
stratigraphy is otherwise much the same; and

(2) that scismic events associated with older units will
probably not be significantly pushed down or pulled
up beneath salt remnants relative to the off-salt sec-
tion; this is under the assumption that dissolution
has occurred mainly during Mesozoic and Cenozoic
time $0 that, although the salt is of low velacity rela-
tive to the overlying units which have collapsed to
the salt-base level, the ultimate compensation sedi-
ments are, for example, Cretaceous clastics {or even
younger sediments) which are of relatively low
velocity.

We intend to test these modelling indications on some real
examples in our future research.

GRAVITY MODELLING

In order 1o determine whether or not one would have a
chance of sceing the effects of partial salt removal in gravi-
ty darta, we consider relative values of g, the accelcration of
gravity. over a {ull salt-bearing section, taken here to be
25 m thick, and over an adjacent section with no salt. For
simplicity we shall consider just two cases: one in which
dissolution has occurred in a very short space of time, i.c.,
before the end of the Devonian, and one in which dissolu-
tion has taken place totally during post-Devonian time.
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The first case is represented by the simple model of
Figure 17a. The difference between the two asymptotic
values, Ag, for this case will just be the difference in g for
two infinite slabs, that is

Ag = 2RGhAp ()

where (G is the gravitational constant (= 6.672 x 10-!! SI
units), # is the thickness of salt dissolved, and Ap is the
difference between typical Devonian carbonate density and
Wabamun salt density.

For the second case (Figure 17b), equation (1) still
applies; however, Ap is then the difference between the
density of the rgplacement sediments {(e.g., Mississippian
carbonates, Cretaceous clastics) and that of Wabamun salt.

Representative values for the three densities menfioned
are indicated in the density log of Figure 14. We have cho-
sen a somewhat lower salt density than indicated there
{which we suspect does not represent a full response to the
salt) because salt densities can easily be as low as or lower
than the value of 2250 kg/m?® which we use (scc, e.g., the
Cairn salt density, also in Figure 14). For the two cases
considered the gravity anomalies are 4.2 g.u. (0.42 mGal)
and 2.1 g.u. (0.21 mGal), respectively. These are well
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above the limits of resolution of most modermn gravimeters,
which arc typically in the range from 0.1 to | g.u. (0.01 to
0.1 mGal).

The gravity models considered here are intended only as
order-of-magnitude analogues. The numerical values used
are all intended to be representative averages but the mod-
els are oversimplified. Nevertheless, these simple model
considerations indicate that gravity surveying might very
well be an effective tool in delineating salt edges. We are
currently working towards the acguisition of gravity data
which will test this proposition.

CONCLUDING DISCUSSION

The present distribution of the Wabamun Group salts
reflects both primary depositional patterns and secondary
dissolutional trends. Such secondary dissolution frequently
creates traps — both stratigraphic and structural. In order
to explore for such traps, it is necessary to determine the
timing and extent of the leaching and to reconstruct the
distribution of the salts during the period of deposition of
prospective reservoir facies. From this preliminary study, it
is apparent that significant dissolution has occurred in the
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Fig. 16. A sonic-tog model (above) and a corresponding 2-D synthetic seismic section (below). The seismic section illustrates the synthetic
response to the thinning of the Wabamun and Cairn salts from 30 m and 35 m, respectively. A 25-ms, 0-phase Ricker wavelet was used; verti-

cal axes give two-way traveltime in 10-ms graduations.

Beaverhill Lake
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study area since the Paleozoic. This is consistent with the
finding of Oiiver and Cowper (1983) of Late Cretaceous
salt removal in the Rumsey area (Twp. 33, Rge. 19W4)
which is just on the southern edge of our study area (Figure
3.

The recenstruction of the original distribution of the
Wabamun salts studied here is beyond the scope of this
paper; however, a methodology for effecting this recon-
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struction is presented in another paper (Anderson et al.,
1989b). Here, an initial step has been taken in that the pre-
sent-day salt distribution within a relatively small study
area has been determined and areas of extensive dissolu-
tion therein have been differentiated from areas of nondis-
solution.

It is important that the geophysicist working in southern
Alberta be aware of the distribution of these and other salts
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Fig. 17. Madel gravity profiles (courtesy of Wild Rose Exploration Services Ltd.) across the edges of two Wabamun salt remnants: {a) assum-
ing dissolution occurred during the Devonian; (b) assuming dissolution occurred entirely after the Devonian. The model of (b} is based on
actual logs (slightly modified) from the two wells: 12-31-34-20W4 (salt-bearing} and 15-27-34-20W4 (ng salt), both of which are within the

study area.
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(Anderson et al., 1989a) and their expected seismic and
gravity signatures. The authors are aware of several
instances where drape across salt remnants has been erro-
neously interpreted as closure across an underlying Leduc
Formation reef and other instances where the salts them-
selves have been misinterpreted as porosity within the
Nisku Formation.
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