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THE FILTERING CHARACTERISTICS OF LEAST-SQUARES POLYNOMIAL APPROXIMATION
FOR REGIONAL/RESIDUAL SEPARATION

JEFFREY B. THURSTON! AND R. JAMES BROWN?

ABSTRACT

Least-squares polynomial approximation is essentially a low-
pass digital filtering procedure that can be used to remove regional
fields from potential-tield dasa. In this paper we study the filtering
characteristics of two different forms of polynomials in tweo inde-
pendent variables. In one form of polynomial its order is equal to the
highest power of any term in the polynomial (e.g., x?, xv, and y* for
order 2 ). In the second form, the order is equal 10 the highest power
of any independent variable in the polynomial (e.g., ¥*y* for order
2). The latter definition results in polynomials that consist of all the
terms that comprise polynomials arising from the former definition,
as well as higher-order cross terms.

Using orthogonal polynomials for the approximating function
facilitates formulation of the computations in terms of space-variant
convolution, Discrete Fourier transforms of the ensuing impulse
responses give the transfer functions of least-squares polynomial
approximation. These transfer functions reveal the following filter-
ing characteristics: inherent sirike sensitivity: diminishing passband
flexibility for an increasing number of grid points; a bias to higher
frequencies for nonsquare grids {with different numbers of points
per side) along the direction with fewer points; spatial variance that
leads to 4 general increase in passband width towards the edges of
the gric; and phase distortion that, near the centre of the grid, is
almost linear in the passband but deviates from linearity as the fre-
quency and radial distance from the centre increases. Synthetic and
real data examples show how these effects can induce artifacts that
distort regional fields.

In light of these potential hazards, we recommend that this
method, which has advantages of being simple to implement and
computationally nonintensive, be used only for preliminary separa-
tion. Rather, detailed interpretation should be performed on maps
processed with linear, phase-invariant digital tiliers.

anomalies of the regional field, and attributed to deep and
large-scale sources, from the shorter wavelength features
constituting the residual field, assumed to arise from shal-
lower, smaller-scale sources. There have been many studies
describing methods used to perform this separation. Most of
the techniques can be put into one of three general cate-
gories: manual smoothing; approximating the long-wave-
length component of the field with a low-order pelynomial;
and linear digital filtering. Manual methods tend to produce
the most reliable results but are time-consuming. The success
of automated methods largely depends on the separability of
the spectral signatures of the regional and residual fields.

Separation by least-squares polynomial approximation
has been in use for over forty years (Agocs, 1951; Simpson,
1954; Swarz, 1954). More recent reviews (Wren, 1973;
Davis, 1986) and refinements (Abdelrahman et al., 1985,
1989; Zeng, 1989; Beltrfo et al., 1991) indicate a continued
widespread use. Because the procedure effects a spectral sep-
aration, it is appropriate for one to gain an understanding of
its filtering characteristics. Lance (1982) did this for the case
of single-variable operators; however, to our knowledge, no
such analysis has addressed the two-variable case. Our aims
in this study, then, have been to examine the filtering charac-
teristics of least-squares approximation for ficld data in two
independent variables, and to determine what artifacts may
be introduced into the regional field as a consequence of
these properties.

LEAST-SQUARES POLYNOMIAL APPROXIMATION

Polynomial approximation is generally performed with a

INTRODUCTION function either of the form:
. B . r+s5 £n
l_’otentla.l-fleld datg are generally subfjected to a Zix,y) = Ezar-.fxr)’s, (1)
regional/residual separation procedure before interpretation oy S

is undertaken. This is done to separate the long-wavelength
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or of the form:

Zix,y) = 3 Y au’y. (2)
r=(dy=0)

The difference between the two is demonstrated by Table 1.
Based on the shapes of these arrays of polynomial elements
as they appear in Table 1, these will be referred to as the
triangular and square forms of these polynomials. For either
form, the order of the polynomial is said to be »n. The space-
domain representation provides no evidence regarding the
differences that are important for regional/residual separa-
tion; however, these will become clear in the course of the
forthcoming wavenumber-domain analysis. Because the
following derivations apply equally to both types, the upper
limits of summation have been omitted for the sake of
generality.

The method of nonoerthogonal polynomials

The use of nonorthogonal polynomials for least-squares
approximation of potential-field data is well known (Agocs,
1951; Fajklewicz, 1939; Abdelrahman et al., 1985). Further,
a detailed summary has been given by Davis (1986); hence
only a cursory discussion is presented here.

It is assumed that the data, denoted z{x, yj). have been
sampled on a rectangular grid with spatial dimension (m-1)
Ax by (p-1)Ay where Ax and Ay are the grid intervals in the x
and y directions. If Z(x, y) represents the polynomial that
best fits the data, then it has the form of equation (1) or (2).
The coefficients @, can be determined by minimization of
the mean square error, £, of the best-fit polynomial, Z(x, y),
relative to the observed data z(x, y):

E = gg{Z(x,,y")—z(.\',,y“)}z. 3

Setting the (n+1)(n+2)/2 partial derivatives equal to 0, for the
triangular polynomials [equation (1)], or the (n+1)? partial

[a—y

'-i,“-t'.

o
L

[N

<

Table 1. Terms contained in the two types of approximating polyno-
mials for n = 4. The triangular form [equation (1)] contains the terms
that are above the dashed line, whereas the square form [equation
{2}] contains all the terms in Table 1 (after Hayes, 1970).
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derivatives equal to 0, for the square polynomials [equation
{2)], invokes the least-squares condition:

9E _
da,,

forall r+s=0,1,2, ..norforr=0,1,2, .mands=0, 1, 2,
... This generates either a systemn of {n+1)(n+2)/2 or (rn+1)?
normal equations thai can be used to solve for the unknown
coefficients of equations (1) or (2), respectively. The
regional field is then given by Z(x, y) and the residual by
z(x;, yj) - Z(x, ¥

0, 4)

The method of orthogonal polynomials

The method of nonorthogonal pelynomials suffers from
numerical instability due to the necessity of inverting a
Hilbert matrix (Lapidus, 1962, p. 329). This leads to: (1) a
loss of accuracy due to rounding errors and (2) computation-
ally intensive algorithms, The preferred approach is to use
orthogonal polynomials to avoid these complications, Of
added importance for this study is the fact that orthogonal
polynomials allow least-squares polynomial-separation cal-
culations to be formulated as two-dimensional convolution,
thus permitting wavenumber-domain analysis of the proce-
dure. An excellent review of the use of orthogonal polynomi-
als in approximating data in two independent variables is
given by Hayes (1970). This review is summarized below,
followed by a demonstration that the method is indeed equiv-
alent to convolution.

It is possible to rewrite equations (1) and (2) in terms of
the polynomials of two variables, P, (x, ) that correspond to
the terms x'y* in equations (1) and (2) and which are orthogo-
nal over the domain of the data. If £ (x, y) and P_ (x, y) are
orthogonal to one another, then,

n i
ZiPa,h(x."yu)Pr,d('xl'.vu):O (5)
r—lu=1
for a+b # c+d, where the summation limits have the same
meaning as before.

Because the data are arranged on a regular rectangular
grid, orthogonal polynomials in two independent variables
are equivalent to the product of two single-variable orthogo-
nal polynomials. That is, Hayes (1970) has shown,

P, (x.y) = P00, (6)

for r+s<n, or r, s<n, where P (x} and Q (v} are both sets of
orthogonal polynomials of a single variable. From a practical
standpoint this is important because several algorithms have
been developed for rapid generation of orthogonal polynomi-
als in one variable. An efficient method for deing this is the
recursive relationship of Forsythe (1957), by which:

P (0=0,

Pylx) =1 M

and
P, ()= 2(x-t )P (x) - B, P, _(x)
where
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1

2 X, P,.2 (.\', ]

=1

Ll
2 Pl(x,)
r=1

ar+| = (8)
and

ZP,.Z(xr)

P ,
ZPE—I(I.‘)
r=l

and similarity for Q (y).
Then the best-fit polynomial [equations (1) and (2)] can
be rewritlen as:

2(xy)= 3 D cn P, ()

where the least-squares solution is given as:

B 9

(10)

moop

Z Z Z("’i’ 'yu ) PJ' (xr ) Q,\ (y.u)
C,w _ i=l u:"] .
z z P"2 (““f ) Qsz (»VH)
r=! w=1
Substituting equation (11) into equation (10) and rearranging
the order of summation gives:

c - P." X 3 Y = "Vf' ‘!( PI' X ¥ I 2
Z(”)ZZZZZ { )Q}n( 3}[ 3 )P (v )by ) {12)
22 P,2 (.1', )Q‘J\2 (yu)

=t =l

Evaluating equation {12) at x = x; and y = ¥; gives an expres-
sion for the best-fit polynomial at each grid point given by
(x,» ¥;). This function represents the long-wavelength, or
regional, component:

Zreg (.1'{- , -vj ) = Z Z meZ(X,-,, ’ y‘f—u }‘

f=~o0l=—co

(11)

r=lw=l r

(13)

where b, 1s zero, except in the interval 1 <r<mand 1 <4 <
p, within which:
bm _ 22 Pﬁ'( T,—)P,.(.’C, )QA ()’“; )Qs(yu).

(14)

m H

P ZZP,.Z(X,-)QJZ(.V.H)

t=1 u=}

The calculation described by equation (13) is a two-dimen-
sional convolution, and hence equation (14) gives the expres-
sion for the spatially variant impulse response for low-pass
filtering via polynomial approximation. Equation (14) is sim-
ilar to an expression given by Lance (1982).

WAVYENUMBER-DOMAIN RESPONSE OF
LEAST-SQUARES APPROXIMATION

The objective of the study of the wavenumber-domain
response of least-squares approximation is to understand the
filtering characteristics of this operation. This is done by

CIEG

73

computing discrete Fourier transforms of equation (14),
which enables examination of amplitude responses, phase
responses, passbands and spatial variation.

From equation (14) it can be seen that a unigue convolu-
tion operator is required for each grid node and that this
operator depends both upon the number of data points along
each side of the grid and upon the number of terms in the
approximating polynomiai. Thus, a complete suite of transfer
functions is prohibitively large. As a consequence, the forth-
coming study focuses on an analysis of the universal charac-
teristics of least-squares polynomial approximation derived
from specific, represemative examples. A focal point of this
analysis is the differences in the filtering properties between
the two forms of approximating polynomials. However,
because square polynomials contain (#/2)(n+1) more terms
than triangular pelynomials of the same order, a comparison
of these two is hardly justifiable. However, a triangular poly-
nomial of order 7 and a square polynomial of order 5 both
comprise 36 terms. Hence, we use these orders whenever
comparisons between the two polynomial types are made.

Transfer functions

Amplitude spectra for low-pass polynomial approxima-
tion filters are shown in Figures 1 and 2. These correspond to
filters that operate on the central grid point of a 25x25 grid
and seventh-order triangular and fifth-order square polyno-
mials. The central grid point is the only location for which
the approximating function does not alter the phase. This can
be seen from equation (14), where b, is areal and even func-
tion at the centre of the grid (Thurston, 1991). The nonzero-
phase response of operators corresponding to other grid loca-
tions are later discussed in more detail. Further, because the
transfer function of the operator corresponding to the centre

0.2

wavenumber
o
1

(cycles/grid intervat)

0o HEE
0.0 0.1 0.2
wavenumber
(cycles/grid interval)

Fig. 1. Amplitude response of the least-squares polynomial approxi-
maticn filter that operates on the centre node of a 25x25 grid, based
on a triangular polynomial with n=7.
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Fig. 2. Same as Figure 1, for a square polynomial with n = 5.

grid location is real and even, the Fourier transform is real
and even. Thus, it is only necessary to show the first quad-
rant of the amplitude specira.

Examination of spectra computed using several data-set
sizes and polynomial orders indicates that these are represen-
tative examples and, thus, illustrate some important features
of polynomial approximation. In general, as for approxima-
tion in one variable {(Wood and Hockens, 1970; Chan and
Leong, 1972). least-squares approximation in two variables
passes all frequencies. However, the signal is effectively
attenuated outside the passband, which here is taken to con-
sist of regions where the amplitude is within 3 dB of the
maximum {(Meskd, 19843, In addition, there is a gentle
decrease in amplitude with increasing wavenumber in the
passband. This rate of atienuation increases in the roll-off
region and decreases in the reject region. In the reject region
there are a number of side lobes of negligible amplitude.
Finally, the amplitude responses are symmetric about a line
defined by k = k.. This is because the grid is square. The con-
sequences of using nonsquare data grids are discussed later.

A detrimental characteristic of these filters is their strike
sensitivity. That is, frequencies passed parallel to the axes
are not the same as those along other azimuths. In Figure 1,
the passband is considerably narrower along k= k_than it is
along k_or k_ =0, while in Figure 2 it is wider along &, =4,
This is tmportant because the Fourier transform preserves
signal directivity (Fuller, 1967). Hence the high-frequency
content will be reduced in the directions of the coordinate
axes as compared to orientations that are obligue to the axes
for square polynomials, while the opposite will apply to tri-
angular polynomials.

Passband measurements

In order to gain an understanding of the filtering charac-
teristics of polynomial approximation, passbands were mea-
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sured for centre filters for various sizes of square data sets
and polynomial orders. We did this by extracting profiles
from discrete two-dimensional Fourier transforms of the
impulse responses along specified orientations and determin-
ing the frequency at which the amplitude spectrum is -3 dB
relative to the value at zero wavenumber. Discrete Fourier
transforms were computed at increments of (0.001 cycles per
grid interval, so this method determines the passband to
within 0.0005 cycles per grid interval. These measurements,
shown in Figure 3, are intended to give estimates of the pass-
bands for a specified grid dimension (i.e., number of points
along the sides of the grid) and polynomial order and 1o
illustrate general trends in the variation of the cut-off
wavenumber, It is important to remember that the general
features apply to all grid locations; however, the actual val-
ues have less and less significance as the distance from the
centre of the grid increases. This is illustrated in the forth-
coming discussion regarding spatial variation.

We made the measurements by obtaining discrete Fourier
transforms along profiles defined by & = 0. for £ 2 0 (i.e.,
along the positive & _axis), and along & =k fork .k 20
(i.e.. at an orientation of 1/4 radians to the positive & axis).
These directions were chosen in order to better understand
the directional dependence. Because this analysis is for the
centre of a square data grid, the transfer functions are real
and even, and the results along the £ axis are applicable to
orientations parallel to either axis. Likewise. the results
along k= k_are applicable to azimuths defined by m/4 +
brf2 (b= 1,2, ..} relative to the &, axis. In addition, it can be
shown that both polynomial types have the same amplitude
responses along the coordinate axes for a given 7 (Thurston,
1991). Hence, on Figure 3 the measurements along the axis
are the same for both polynomial types.

There are three important insights that can be inferred
from Figure 3.
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Fig. 3. Passbands for centre filters.
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1) The passband width decreases with increasing data-set
size and decreasing polynomial order. This effect is less
pronounced as the data-set size increases. This places
some limitations on the flexibility of polynomial approxi-
mation for filtering data grids with a large number of
points, That is, variation of wavenumber content between
grids computed from different polynomial orders
decreases, and there are diminishing marginal returns on
cut-off wavenumber reduction for further increases in grid
size. Lance (1982) obtained similar results for data in one
independent variable.

2) Based on the differences between the cut-off wavenumber
parallel to, and at an angle of /4 to, the axes, the incon-
sistencies in the passband width apply for varying data-set
sizes and polynomial orders. The orientation dependence
decreases for lower orders and for an increasing number
of data points. Also, this effect is less pronounced for
square polynomials than it is for triangular polynomials.
The potential for distortion of anomaly shape will be
shown later.

3} Finally, while these results are for square data grids, some
comments can be made regarding data on grids that are
not square. This is possible because the amplitude
response along a frequency-domain axis is affected only
by the number of points along the corresponding spatial
axis. Hence, while the passband measurements along & =
k_shown in Figure 3 have no meaning for grids that are
not square, the measurements along the axes do. This
gives an indication of the bias inherent in approximating
data on a rectangular grid. That is, high-frequency content
is diminished along the side of the grid with the greater
number of points. This directional bias acts in conjunction
with the anisotropic nature of the passband discussed
above.

Spatial variation and phase distortion

The discussion so far has been limited to transfer func-
tions for convolution operators for centre filters. This is a
restricted case. as it applies only to the central gnd point of a
rectangular data array containing an odd number of points
along each side, One issue that must be addressed is that the
passband width varies away from the central grid node. This
variation is shown in Figures 4 and 5, which are contour
plots of passband measurements at each grid node for a spec-
ified polynomial order, grid size and orientation. Figure 4
shows the variation along an azimuth of /4 to the & axis for
a 25x25 grid and a triangular seventh-order polynomldl
Shown in Figure 5 are the same results for a 25x25 gnd and a
square fifth-order polynomial. The partern of variation shown
in Figures 4 and 5 are consistent for various orders of triangu-
lar and square polynomials, These results show that the pass-
band generally increases as the distance from the centre of the
grid increases; however, this variation is not radially symmet-
ric. This implies that least-squares polynomial approximation
biases features depending on two factors; the radial distance
of the feature from the centre of the grid and the azimuth of
the feature with respect to the centre of the grid.
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Potential-field separation filters should be phase invariant
(Syberg, 1972; Jacobsen, 1987). Hence, a second concern is
that polynomial approximation may cause alteration of the
phase. We have empirically determined that, unlike spatial
variation in the passband, the phase shift corresponding to
each grid node is only a function of the radial distance from
the centre of the grid. Figure 6 shows phase responses at

13

25

2

w

Fig. 4. Space-domain centour plot of passband variation along an
azimuth of n/4 of least-squares polynomial approximation for a grid
size of 25x25 and a triangular polynomiat with n = 7. The spatial
indices i {corresponding to x} and ; (corresponding to y) correspond
to those in equation {13}. The dashed concentric circles are radii of 2,
4 and 8 grid units and show the locations of the grid nodes that corre-
spond to the phase responses in Figure 6.

Fig. 5. Same as Figure 4, for a square polynomial with n=5.
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three radial distances for a triangular seventh-order polyno-
mial and a 25x25 grid. The characteristics of these phase
responses are typical of phase responses for polynomial
approximation using both forms for the approximating poly-
nomial and various orders and grid sizes. This demonstrates
that polynomial approximation induces phase disiortion that
increases with the radial distance from the centre. Over most
of the data grid the largest phase shifts occur at wavenum-
bers greater than the cut-off wavenumber and, within the
passband, phase shifts are almost linear. This will tend to
cause a bulk shift of an anomaly. On the periphery of the
data grid, where the cut-off wavenumbers are greatest, phase
alterations are larger and do not vary linearly within the
passband.

Zurflueh (1967) noted the unreliability of polynomial
approximation in the vicinity of the edges of the data. Our
results indicate that these edge effects are due to the large
passband variation, shown in Figures 4 and 5, and by the
considerable phase distortion.

RESuULTS

The results of polynomial approximation may be evalu-
ated in light of knowledge of the filtering characteristics. The
algorithm implemented for least-squares approximation is
based on computing polynomial coefficients in terms of
orthogonal functions specified by equation (11). The
regional field is then calculated by using these coefficients in
equation (10). This has been performed on three data sets:
two synthetic examples and Bouguer gravity data from
north-central Alberta.

Synthetic data

Two synthetic examples are presented in order to illus-
trate some of the properties of polynomial approximation
determined in the wavenumber-domain analysis. The first
data set consists of sets of unit-amplitude trends located at
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Fig. 6. Phase responses of a triangular polynomial with 7 = 7 com-
puted along k, = ky.
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various positions and oriented at 45° to the grid. Polynomial
approximation of these data demonstrates the differences in
the passband of the two types of polynomials, the effects of
spatial variation in the passband and the effects of phase dis-
tortion. Shown in Figures 7 and 8 are the results of approxi-
mation with a triangular seventh-order polynomial and a
square fifth-order polynomial. Near-linear phase distortion
gives rise to the misalignment of the unit-amplitude trends
and the peaks from polynomial approximation. In addition,
the magnitude and the high-frequency component of the
trends are greater in Figure 8 than in Figure 7. This is
because of the larger passband width for square polynomials.
Further, there is a discrepancy in the frequency content of
trends on the same map. This is a result of spatial variation in
the passband. Comparing Figure 4 with Figure 7 and Figure
5 with Figure 8 indicates that there is a correspondence
between regions containing higher frequencies and regions
of wider passhand,

The second synthetic data example uses the rectangular
parallelepiped. The purpose of this is to demonstrate the
potential for shape distortion as a result of anisotropy in the
passband. Shown in Figure 9 is the gravity anomaly for a 15-
km x 15-km rectangular parallelepiped buried 15 km below
the surface, with a thickness of 5 km. Because this example
is intended to highlight the effects of passband anisotropy,
the source body is located at the centre of the grid in order to
minimize the effects of phase distortion and spatial variation.
Figures 10 and 11 show the results of approximating this
anomaly with a triangular seventh-order polynomial and a
square fifth-order polynomial. The square shape in Figure 11
is a result of biasing signal oblique to the axes. whereas the

N7/ |

2,
H D ) )
aQ
@ %
-002 %@

Fig. 7. Space-domain plot of approximation of unit amplitudes with a
trianguiar polynomial with 7 = 7. The spatial indices / (corresponding
to x) and j (corresponding to ¥} correspond to those in equation (13).
The bold lines show the unit-ampiitude features.
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rotated square shape in Figure 10 is a result of muting such
signal. Neither polynomial type reliably preserves the shape
of the input data; however, the results in Figure 11 more
closely resemble the input than do the results in Figure 10,
where the anomaly appears to be rotated.

Real data

Filtering of a Bouguer gravity data set from north-central
Alberta has been performed by polynomial approximation.

252\5

21

25
25

21

L 15
> o, [
\_\‘______/
contour inetval = 0.2 mGal
1 N 1 Il i 1 1
1 5 S 1.3 17 21 25
)

Fig. 9. Gravity anomaly of a rectangular parallelepiped. The spatial
indices / (corresponding to x) and j (corresponding to y} correspond to
those in equation (13). The source bedy is cutlined by the bold
square.
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The data are a subset of the Bouguer gravity anomaly map of
Canada (Goodacre et al., 1987). The grid was extracted in
digital form and comprises 75x75 points with a 5-km grid
interval. These data are shown in Figure 12. The most promi-
nent feature on this map is an approximately 170-km x 60-
km feature trending north-south (in the northern portion) and
southwest-northeast (in the southern portion), with a mini-
mum relative value of -98 mGal. It has been named the Trout
Mountain Low (Walcott and Boyd, 1971), Burwash and

25

21

1 5 9 13 17 21 25

Fig. 10. Triangular polynomial with n = 7 computed by least-squares
approximation to the anomaly in Figure 9. The spatial indices i (corre-
sponding to x) and j (corresponding to y) correspond to those in
equation (13).
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Fig. 11. Same as Figure 10, using & square polynomial with = 5.
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Power (1990) attribute this feature to a granitic pluton, 25
km thick, emplaced in a granulite-facies country rock. This
residual low is embedded in a long-wavelength component
that generally decreases to the southwest,

The long-wavelength component of the Bouguer anomaly
field in this region of Alberta has been examined in a number
of studies and several models have been proposed to explain
its origins. Sprenke and Kanasewich ({982) imaged a rela-
tive decrease to the southwest on a middle-wavelength (500-
1000-km bandpass-filtered) Airy anomaly map and
attributed it to either a topographic high on the Moho or
anomalously high mantle densities. Stephenson et al. (1989)
resolved a gradient with a relative decrease to the southwest
on a 400-700-km bandpass-filtered Airy anomaly map. This
trend was thought to be due to crustal thickening beneath the
Rocky Mountains. Burwash and Power (1990) ascribe the
regional field in the vicinity of the Trout Mountain Low to
both crustal thickening and to effects of the Peace River
Arch.

For this study, a suite of low-pass filtered Bouguer
anomaly maps with cut-off wavelengths ranging between
125 km and 1000 km were generated in order to separate the
Trout Mountain Low from the regional field. It was found
that a 250-km long-wavelength map. shown in Figure 13,
removes the signature of the Trout Mountain pluton, while
depicting a relative local low, near the centre of the map,
superimposed on a longer-wavelength field that decreases to
the southwest. This regional field can, to a certain extent, be
reproduced by polynomial approximation. This illustrates the
efficacy of polynomial approximation for performing a
regional/residual separation. Several regional fields were
computed by polynomial approximation and the results of
wavelength filtering (Figure 13) were best reproduced by

58°N

56°'N

contour interval = 5 mGal

100 km

Fig. 12. Bouguer anomaly data from north-central Alberta. TML
denotes the Trout Mountain Low discussed in the text.
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using 7 = 3 in equations (1) and (2). This is not surprising, as
the passband measurements indicate that for a 75x75 grid
with a 5-km grid interval, least-squares approximation passes
wavelengths between approximately 200 and 300 km,
depending upon polynomial type, orientation and grid loca-
tion. The results of polynomial approximation are shown in
Figures 14 and 15,

With the exception of the data near the edges of the grid,
where the passbands are considerably greater, the data shown
in Figures 14 and 15 generally resemble those shown in
Figure 13. However, there are some important differences.
For instance, the results using the triangular polynomial,
shown in Figure 14, do not properly resolve the relative high
near the centre of the map. This is because, as shown in
Figure 13, this feature trends predominantly northeast,
oblique to the grid. Because triangular polynomials degrade
high-frequency features that are not parallel to the axes, this
high, which comprises relatively short wavelengths, is poorly
represented on Figure 14, On the other hand, square polyno-
mials have a larger passband parallel to this regional trend.
As a result, the long-wavelength component is reasonably
well-reproduced on Figure 15. However, there is some dis-
crepancy between the trends of the regional fields shown on
Figures 13 and 15. This may be because the relative high on
the low-pass filtered data shown in Figure 13 does not trend
exactly parallel to the direction of maximum passband of the
data on Figure 15. This could result in the apparent rotation
of the regional field on Figure 13,

It may be argued that the regional field in Figure 13
[equation (2)] is superior to that of Figure 14 [equation (1)]
because more degrees of freedom are included in its approxi-
mating polynomial. However, it can be shown that it is not
possible to correctly compute a regional field, using triangular
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Fig. 13. The data shown in Figure 12 after low-pass filtering 1o elimi-
nate wavelengths shorter than 250 km,
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polynomials, that correctly depicts the long-wavelength
northeast-southwest trend even if more terms are included in
the approximating function. This is demonstrated by Figure
16 which shows the results of using a fourth-order triangular
polynomial. Increasing the polynomial order increases the
passband along the axes resulting in the inclusion of the low-
frequency component of the north-south trending Trout
Mountain Anomaly in the regional field.
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Fig- 14. Triangular polynomial with n = 3 computed by least-squares
approximation to the data shown in Figure 12,
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Fig. 15. Square polynomial with n = 3 computed by least-squares
approximation to the data shown in Figure 12,
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SuMMARY AND CONCLUSIONS

Determining the regional component of potential-field
data usually entails suppression of high frequencies and
enhancement of low frequencies. One method for doing this
is least-squares polynomial approximation. We have investi-
gated the filtering characteristics of two forms for the
approximating function for least-squares approximation for
data in two independent variables. To do this we formulated
this operation in terms of convolution and subsequently com-
puted Fourier transforms of the impulse responses.

This study reveals several properties that should be con-
sidered when evaluating results of this technique. These are:
1} Anisotropy in the passband. That is, the passband width

varies depending upon anomaty orientation. For triangular
polynomials passbands are narrower for signal oblique to
the axes, whereas for square polynomials passbands are
wider. The amount of anisotropy can be reduced by using
more grid points and lower-order polynomials. Also,
square polynemials are less anisotropic and thus may be
preferable. Real and synthetic data tests suggests the
anisotropy may lead to incorrect orientation of the
regional field.

2) High-pass wavenumbers decrease with increasing grid
size and decreasing polynomial order. The variation in
passband width decreases as the size of the data array
increases, limiting the flexibility of polynomial approxi-
mation for large data grids.

3) Directional bias occurs when there are unequal numbers
of data points along the two sides of the grid.

4) The impulse response, and as a consequence the pass-
band, is spatially variant.
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Fig. 16. Triangular polynomial with n = 4 computed by least-squares
approximation to the data shown in Figure 12,
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5) There is quasi-linear phase distortion in the passband.
This distortion increases and departs from linearity as the
frequency and radial distance from the centre increases.
Hence, results are unreliable in the vicinity of the edges of
the grid.

In light of these characteristics, we suggest that automated

separation be done by linear digital filtering.
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