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THE FILTERING CHARACTERISTICS OF LEAST-SQUARES POLYNOMIAL APPROXIMATION 
FOR REGIONAL/RESIDUAL SEPARATION 

JEFFREY B. THURSTON~ AND I?. JAMES BROWS 

ABSTRACT 
Least-squares polynomial approximation is essentially a tow- 

pass digit4 filtering pr”crd”rt! Lhrl, can he used t” remO”e regional 
fields from potentialMeld dam In this paper we study the filtering 
characteristics of Iwo different forms of polynomials in two inde- 
pendent variables. I” one FixIT of polynurnid its order is qua1 to the 
highest power of any tern in the polynomial (e.g.. .x2, .sy, and y’ for 
order 2 ). I” ,he second furm. ,he order is equal 1” the hi&es, puwer 
of any independent variable in the polynomial (e.g.. .22 for or&r 
2). The lattrr detinition results in pdynomiati that ~oniist of all the 
terms that comprise polynomials arising from the former drfinitian. 
as we,, 3s higher-“r&r cross terms. 

Using orthogonal polynomials for the appronima~ing function 
facilitates fomlu,ation of Ihe c”mp”tati”ns in temls of space-variant 
convoIu~ion. Discrete Fourier transforms of the ensuing impulse 
responses give the transfer functions of least-rquarrh polynomial 
approximation. There transfer functions reveal the following filter- 
ing characteristics: inherent strike sensitivity: diminishing passband 
tkxibility for an increasing number of grid points: il bias to higher 
frequencirs for nonsquare grids (with differen! numbers “f points 
per side) along the dire&m with fewer points: sparial variance that 
leads to a general increase in passband width towards the edges of 
the grid: and phase dist”rrion rixtt. near the ccmre of Ihe grid. IS 
almmt linear in the passband but deviates from linearity as the Fred 
quency and mddial distance from the centre increaser. Synthetic and 
real data examples show how these effects cm induce anifacta that 
*iston regional fields. 

In light of these potential hazards. we recommend that thlr 
mcrhod, which has advantages of being simple to implcmenl and 
computationally nonintensive, be used only for preliminary separa~ 
Con. Rather, detailed interpretation should be performed on maps 
processed with linear, phase-invariant digital filters. 

Potential-field data are generally subjected to a 
regional/residual separation procedure before interpretation 
is undertaken. This is done to separate the long-wavelength 

anomalies of the regional field, and attributed to deep and 
large-scale sources, from the shorter wavelength features 
constituting the residual field, assumed to arise from shal- 
lower, smaller-scale sources. There have been many studies 
describing methods used to perform this separation. Most of 
the techniques can be put into one of three general cate- 
gories: manual smoothing; approximating the long-wave- 
length component of the field with a low-order polynomial; 
and linear digital filtering. Manual methods tend to produce 
the most reliable results but are time-consuming. The success 
of automated methods largely depends on the separability of 
the spectral signatures of the regional and residual fields. 

Separation by least-squares polynomial approximation 
has been in use for over forty years (Agocs, 1951; Simpson, 
1954; Swarr, 1954). More recent reviews (Wren, 1973; 
Davis, 1986) and refinements (Abdelrahman et al., 1985, 
1989; Zeng, 1989; BeltrFto et al., 1991) indicate a continued 
widespread use. Because the procedure effects a spectral sep- 
aration, it is appropriate for one to gain an understanding of 
its filtering characteristics. Lance (1982) did this for the case 
of single-variable operators: however. to our knowledge, no 
such analysis has addressed the two-variable CBS.% Our aims 
in this study, then, have been to examine the filtering charac- 
teristics of least-squares approximation for field data in two 
independent variables, and to determine what artifacts may 
be introduced into the regional field as a consequence of 
these properties. 

LEAST-SQUARES POLYNOMIAL AtmtoxtMATtm 

Polynomial approximation is generally performed with a 
function either of the form: 

,+s 9 
Z(x,yJ = ~~a&y”, (1) 

,=O=” 
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or of the form: 
,r I, 

zcl,yJ = x -&7,,,r’y”. (2) 

The difference between the two is demonstrated by Table I. 
Based on the shapes of these arrays of polynomial elements 
as they appear in Table I. these will be referred to as the 
trionph and squaw forms of these polynomials. For either 
form, the order of the polynomial is said to be n. The space- 
domain representation provides no evidence regarding the 
differences that are important for regional/residual separa- 
tion; however, these will become clear in the course of the 
forthcoming wavenumber-domain analysis. Because the 
following derivations apply equally to both types, the upper 
limits of summation have been omitted for the sake of 
generality. 

The method of nonorthogonal polynomials 
The use of nonorthogonal polynomials for least-squares 

approximation of potential-field data is well known (Agocs, 
1951; Fajklewicz, 1959; Abdelrahman et al., 1985). Further, 
a detailed summary has been given by Davis (1986); hence 
only a cursory discussion is presented here. 

It is assumed that the data, denoted z(x,, y,), have been 
sampled on a rectangular grid with spatial dimension (m-l) 
Ar by @-I )Ay where hx and Ay are the grid intervals in the x 
and y directions. If Z(x, y) represents the polynomial that 
best fits the data, then it has the form of equation (I) or (2). 
The coefficients arS can be determined by minimization of 
the mean square error, E, of the best-fit polynomial, Z(x. y), 
relative to the observed data :(I. y): 

E = ~f:{Z(r,,y,,)-z(s,.Y,,)}* 
,=, u=, 

Setting the (n+l)(n+2)/2 partial derivatives equal to 0, for the 
triangular polynomials [equation (I)], or the (u+I)~ partial 

1 x x2 x3 x4 , / 

Y XY X2Y x’y, , ‘x$y 

y? XY’ xy / 5& x”y’ 

Y3 xy’, # 5&’ x’y’ x4y’ 

Y” 
’ ‘4 ,* xy x*y4 x’y4 x4y4 

Table 1. Terms contained in the two types of approximating polyno- 
mials lor n = 4. The triangular form [equation (I)] contains the terms 
that are above the dashed line, whereas the square form [equation 
(2)] contains all the terms in Table 1 (after Hayes, IWO). 

derivatives equal to 0, for the square polynomials [equation 
(2)], invokes the least-squares condition: 

JE 
z=O. (4) 

for all IYS = 0, I, 2, . ..n or for i- = 0, I, 2, . ..n and s = 0. I, 2, 
. ..n. This generates either a system of (n+l)(n+2)/2 or (n+l)* 
normal equations that can be used to solve for the unknown 
coefficients of equations (I) or (2), respectively. The 
regional field is then given by Z(x;, yj) and the residual by 
‘(Xi, Yi) - Z(x,, rib 

The method of orthogonal polynomials 
The method of nonorthogonal polynomials suffers from 

numerical instability due to the necessity of inverting a 
Hilbat matrix (Lapidus, 1967.. p. 329). This leads to: (I) a 
loss of accuracy due to rounding errors and (2) computation- 
ally intensive algorithms. The preferred approach is to use 
orthogonal polynomials to avoid these complications. Of 
added importance for this study is the fact that orthogonal 
polynomials allow least-squares polynomial-separation cal- 
culations to be formulated as two-dimensional convolution. 
thus permitting wavenumber-domain analysis of the proce- 
dure. An excellent review of the use of orthogonal polynomi- 
als in approximating data in two independent variables is 
given by Hayes (1970). This review is summarized below, 
followed by a demonstration that the method is indeed equiv- 
alent to convolution. 

It is possible to rewrite equations (I) and (2) in terms of 
the polynomials of two variables, PJx, y) that correspond to 
the terms x’y” in equations (I) and (2) and which are orthogo- 
nal over the domain of the data. If P&, y) and P&, y) are 
orthogonal to one another, then, 

(5) 

for a+h f c+d, where the summation limits have the same 
meaning as before. 

Because the data are arranged on a regular rectangular 
grid, orthogonal polynomials in two independent variables 
are equivalent to the product of two single-variable orthogo- 
nal polynomials. That is, Hayes (1970) has shown, 

P&Y) = P,(x)Q$y) (6) 

for r+s~n. or I, s<n, where P,(x) and Q&Y) are both sets of 
orthogonal polynomials of a single variable. From a practical 
standpoint this is important because several algorithms have 
been developed for rapid generation of orthogonal polynomi- 
als in one variable. An efficient method for doing this is the 
recursive relationship of Forsythe (1957), by which: 

Pm,(x) = 0, 
P,(x) = I (7) 

and 

P,,,(x) = Xx-c$+,)P,(x) - P,P,_,(~)~ 
where 
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-&,P,?(.v,) 

(8) 

and 

,=I 

and similarity for Q,(J). 
Then the best-fit polynomial [equations (I) and (?)I can 

be rewritten as: 

Z(-‘,Y) = CC[,,~,p,~(r)Q.~(y). (IO) 

where the least-squares solution is given as: 
“8 ,’ 

CCZ(-~,.Y~,)P,~(~,)Q,(Y,,) 
c,, = ,=I ,,=I 

8 I 

;f'%)Q.fb.) 
(II) 

Substituting equation (I I) into equation (IO) and rearranging 
the order of summation gives: 

z(.,~,v)= -p&J p,~(~,)~,(\.);(*i.Yr)p~(~~l)~,~(Y,,) (12) 
1/z p 

,=I,,=, I~ I ~gw?ih) 

Evaluating equation (12) at x = xi and y = ‘; gives an expres- 
sion for the best-fit polynomial at each grid point given by 
(\,. yi). This function represents the long-wavelength, or 
regional, component: 

zr&;3Yj) = 2 ~h,,,r(xi&,.i,i-t,). (13) 

where h,,( is zero, except in the interval I 5 I < m and I < u 2 
p. within which: 

h,,, = cc 
P~("i)P,(x,)Q,(~,,)Q,~(r,,) 

I~ s $&,+,)Q:(Y,,) 
(14) 

,=I /,i, 

The calculation described by equation (I 3) is a two-dimen- 
sional convolution, and hence equation (14) gives the expres- 
sion for the spatially variant impulse response for low-pass 
filtering via polynomial approximation. Equation (14) is sim- 
ilar to an expression given by Lance (1982). 

WAVENUMBER-DOMAIN RESPONSE OF 
LEA!W-SQUARES APPROXIMATION 

The objective of the study of the wavenumber-domain 
response of least-squares approximation is to understand the 
filtering characteristics of this operation. This is done by 

computing discrete Fourier transforms of equation (14). 
which enables examination of amplitude responses, phase 
responses, passbands and spatial variation. 

From equation (14) it can be seen that a unique convolu- 
tion operator is required for each grid node and that this 
operator depends both upon the number of data points along 
each side of the grid and upon the number of terms in the 
approximating polynomial. Thus, a complete suite of transfer 
functions is prohibitively large. As a consequence, the forth- 
coming study focuses on an analysis of the universal charac- 
teristics of least-squares polynomial approximation derived 
from specific, representative examples. A focal point of this 
analysis is the differences in the filtering properties between 
the two forms of approximating polynomials. However, 
because square polynomials contain (n/2)(n+l) more terms 
than triangular polynomials of the same order, a comparison 
of these two is hardly justifiable. However, a triangular poly- 
nomial of order 7 and a square polynomial of order 5 both 
comprise 36 terms. Hence, we use these orders whenever 
comparisons between the two polynomial types are made. 

Transfer functions 
Amplitude spectra for low-pass polynomial approxima- 

tion filters are shown in Figures I and 2. These correspond to 
filters that operate on the central grid point of a 25x25 grid 
and seventh-order triangular and fifth-order square polyno- 
mials. The central grid point is the only location for which 
the approximating function does not alter the phase. This can 
be seen from equation (I 4). where h,u is a real and even func- 
tion at the centre of the grid (Thurston, 1991). The nonzero- 
phase response of operators corresponding to other grid loca- 
tions are later discussed in more detail. Further, because the 
transfer function of the operator corresponding to the centre 

J 
g .9 
:Po.l 
eE, 
q 

2 

wa”e”‘“mbel 
0.2 

tcyctedigrld Intervat, 

Fig. 1. Amplitude response of the least-squares polynomial approxi- 
mation filter that operates on the centre node of a 25x25 grid, based 
on a triangular polynomial with n = 7. 
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0.2 

Fig. 2. Same as Figure 1, for a square polynomial with n = 5 

grid location is real and even, the Fourier transform is real 
and even. Thus, it is only necessary to show the first quad- 
rant of the amplitude spectra. 

Examination of spectra computed using several data-set 
sizes and polynomial orders indicates that these are represen- 
tative examples and, thus, illustrate some important features 
of polynomial approximation. In general, as for approxima- 
tion in one variable (Wood and Hockens, 1970; Chan and 
Leong. 1972). least-squares approximation in two variables 
passes all frequencies. However, the signal is effectively 
attenuated outside the passband, which here is taken to con- 
sist of regions where the amplitude is within 3 dB of the 
maximum (Meskii.1984). In addition, there is a gentle 
decrease in amplitude with increasing wavenumber in the 
passband. This rate of attenuation increases in the roll-off 
region and decreases in the re,ject region. In the reject region 
there are a number of side lobes of negligible amplitude. 
Finally, the amplitude responses are symmetric about a line 
defined by k = kY. This is because the grid is square. The con- 
sequences of using nonsquare data grids are discussed later. 

A detrimental characteristic of these filters is their strike 
sensitivity. That is, frequencies passed parallel to the axes 
are not the same as those along other azimuths. In Figure I, 
the passband is considerably narrower along k = k, than it is 
along k or /I = 0, while in Figure 2 it is wider along k~, = ky. 

This is important because the Fourier transform preserves 
signal directivity (Fuller, 1967). Hence the high-frequency 
content will be reduced in the directions of the coordinate 
axes as compared to orientations that are oblique to the axes 
for square polynomials, while the opposite will apply to tri- 
angular polynomials. 

Passband measurements 
In order to gain an understanding of the filtering charac- 

teristics of polynomial approximation, passbands were mea- 

sued for centre filters for various sizes of square data sets 
and polynomial orders. We did this by extracting profiles 
from discrete two-dimensional Fourier transforms of the 
impulse responses along specified orientations and detennin- 
ing the frequency at which the amplitude spectrum is -3 dB 
relative to the value at ~.%a wavenumber. Discrete Fourier 
transforms were computed at increments of 0.001 cycles per 
grid interval, so this method determines the passband to 
within 0.0005 cycles per grid interval. These measurements. 
shown in Figure 3, are intended to give estimates of the pass- 
bands for a specified grid dimension (i.e.. number of points 
along the sides of the grid) and polynomial order and to 
illustrate general trends in the variation of the cut-off 
wavenumber. It is important to remember that the general 
features apply tu all grid locations; however, the actual val- 
ues have less and less significance as the distnncc from the 
centre of the grid increases. This is illustrated in the forth- 
coming discussion regarding spatial variation. 

We made the measurements by obtaining discrete Fourier 
transforms along profiles defined by k, = 0. for kt t 0 (i.e., 
along the positive k axis), and along k = k, for k\. k 2 0 
(i.e., at an orientation of 1114 radians to the positive k, axis). 
These directions were chosen in order to better understand 
the directionel dependence. Because this analysis is for the 
centre of a square data grid, the transfer functions are real 
and even, and the results along the k axis are applicable to 
orientations parallel to either axis. Likewise, the results 
along k$ = kV are applicable to azimuths defined by n/4 + 
hn/2 (h = I, 2. . ..) relative to the k< axis. In addition, it can be 
shown that both polynomial types have the same amplitude 
responses along the coordinate axes for it given n (Thuston, 
1991). Hence, on Figure 3 the mensuranents along the axis 
are the same for both polynomial types. 

There are three important insights that can be inferred 
from Figure 3. 
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Fig. 3. Passbands for centre filters 
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I) The passband width decreases with increasing data-set 
size and decreasing polynomial order. This effect is less 
pronounced as the data-set size increases. This places 
some limitations on the flexibility of polynomial approxi- 
mation for filtering data grids with a large number of 
points. That is, variation of wavenumber content between 
grids computed from different polynomial orders 
decreases, and there are diminishing marginal returns on 
cut-off wavenumber reduction for further increases in grid 
size. Lance (1982) obtained similar results for data in one 
independent variable. 

2) Based on the differences between the cut-off wavenumber 
parallel to, and at an angle of n/4 to, the axes, the incon- 
sistencies in the passband width apply for varying data-set 
sires and polynomial orders. The orientation dependence 
decreases for lower orders and for an increasing number 
of data points. Also, this effect is less pronounced for 
square polynomials than it is for triangular polynomials. 
The potential for distortion of anomaly shape will be 
shown later. 

3) Finally. while these results are for square data grids, some 
comments can be made regarding data on grids that are 
not square. This is possible because the amplitude 
response along a frequency-domain axis is affected only 
by the number of points along the corresponding spatial 
axis. Hence. while the passband measurements along k = 
kv shown in Figure 3 have no meaning for grids that are 
not square, the measurements along the axes do. This 
gives an indication of the bias inherent in approximating 
data on a rectangular grid. That is, high-frequency content 
is diminished along the side of the grid with the greater 
number of points. This directional bias acts in conjunction 
with the anisotropic nature of the passhand discussed 
above. 

Spatial variation and phase distortion 
The discussion so far has been limited to transfer func- 

tions for convolution operators for centre filters. This is a 
restricted case. as it a pplies only to the central grid point of a 
rectangular data array containing an odd number of points 
along each side. One issue that must be addressed is that the 
pesshand width varies away from the central grid node. This 
variation is shown in Figures 4 and 5, which are contour 
plots of passband measurements at each grid node for a spec- 
ified polynomial order, grid size and orientation. Figure 4 
shows the variation along an azimuth of ~14 to the k axis for 
a 2.5~25 grid and a triangular seventh-order polynomial. 
Shown in Figure 5 are the same results for a 2~5x25 grid and a 
square fifth-order polynomial. The pattern of variation shown 
in Figures 4 and 5 are consistent for various orders of triangu- 
lar and square polynomials. These results show that the pass- 
band generally increases as the distance from the centre of the 
grid increases; however, this variation is not radially symmet- 
ric. This implies that least-squares polynomial approximation 
biases features depending on two factors: the radial distance 
of the feature from the centre of the grid and the azimuth of 
the feature with respect to the centre of the grid. 

Potential-field separation filters should be phase invariant 
(Syberg, 1972; Jacobsen, 1987). Hence, a second concern is 
that polynomial approximation may cause alteration of the 
phase. We have empirically determined that, unlike spatial 
variation in the passband, the phase shift corresponding to 
each grid node is only a function of the radial distance from 
the centre of the grid. Figure 6 shows phase responses at 

Fig. 4. Space-domain wntour plot of passband variation along an 
azimuth of x/4 of least-squares polynomial approximation for a grid 
size of Zx25 and a triangular polynomial with n = 7. The spatial 
indices i (corresponding to x) and j (corresponding to u) correspond 
to those in equation (13). The dashed concentric circles are radii of 2. 
4 and 8 grid units and show the locations of the grid nodes that corre- 
spond to the phase responses in Figure 6. 

Fig, 5. Same as Figure 4. for a square polynomial with n = 5 
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three radial distances for a triangular seventh-order polyno- 
mial and a 25x25 grid. The characteristics of these phase 
responses are typical of phase responses for polynomial 
approximation using both forms for the approximating poly- 
nomial and various orders and grid sizes. This demonstrates 
that polynomial approximation induces phase distortion that 
increases with the radial distance from the centre. Over most 
of the data grid the largest phase shifts occur at wavenum- 
hers greater than the cut-off wavenumber and, within the 
passhand, phase shifts are almost linear. This will tend to 
cause a bulk shift of an anomaly. On the periphery of the 
data grid, where the cut-off wavenumbers are greatest, phase 
alterations are larger and do not vary linearly within the 
passhand. 

Zurflueh (1967) noted the unreliability of polynomial 
approximation in the vicinity of the edges of the data. Our 
results indicate that these edge effects arc due to the large 
passhand variation, shown in Figures 4 and S. and by the 
considerable phase distortion. 

RESULTS 

The results of polynomial approximation may he evalu- 
ated in light of knowledge of the filtering characteristics. The 
algorithm implemented for least-squares approximation is 
based on computing polynomial coefficients in tams of 
orthogonal functions specified by equation (I I ). The 
regional field is then calculated by using these coefficients in 
equation (IO). This has been performed on three data sets: 
two synthetic examples and Bouguer gravity data from 
north-central Alberta. 

Synthetic data 
Two synthetic examples are presented in order to illus- 

trate some of the properties of polynomial approximation 
determined in the wavenumber-domain analysis. The first 
data set consists of sets of unit-amplitude trends located at 

J.B. THURSTON and K.,. BROWN 

Fig. 5. Phase responses of a triangular polynomial with n = 7 com- 
puted along k, = k,. 

various positions and oriented at 45” to the grid. Polynomial 
approximation of these data demonstrates the differences in 
the passhand of the two types of polynomials, the effects of 
spatial variation in the passhand and the effects of phase dis- 
tortion. Shown in Figures 7 and 8 are the results of approxi- 
mation with a triangular seventh-order polynomial and a 
square fifth-order polynomial. Near-linear phase distortion 
gives rise to the misalignment of the unit-amplitude trends 
and the peaks from polynomial approximation. In addition, 
the magnitude and the high-frequency component of the 
trends are greater in Figure 8 than in Figure 7. This is 
because of the larger passhand width for square polynomials. 
Further, there is a discrepancy in the frequency content of 
trends on the same map. This is a result of spatial variation in 
the passhand. Comparing Figure 4 with Figure 7 and Figure 
5 with Figure 8 indicates that there is a correspondence 
between regions containing higher frequencies and regions 
of wider passhand. 

The second synthetic data example uses the rectangular 
parallelepiped. The purpose of this is to demonstrate the 
potential for shape distortion as a result of anisotropy in the 
passband. Shown in Figure 9 is the gravity anomaly for a IS- 
km x l5-km rectangular parallelepiped buried IS km below 
the surface, with a thickness of 5 km. Because this example 
is intended to highlight the effects of passhand anisotropy. 
the source body is located at the centre of the grid in order to 
minim& the effects of phase distortion and spatial variation. 
Figures IO and I I show the results of approximating this 
anomaly with a triangular seventh-order polynomial and a 
square fifth-order polynomial. The square shape in Figure I I 
is a result of biasing signal oblique to the axes, whereas the 

Fig. 7. Space-domain plot of approximation of unit amplitudes with a 
triangular polynomial with n = 7. The spatial indices i (corresponding 
to x) and j (corresponding to v) correspond to those in equation (13). 
The bold lines show the unit-amplitude features. 
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rotated square shape in Figure IO is a result of muting such 
signal. Neither polynomial type reliably preserves the shape 
of the input data; however, the results in Figure I I more 
closely resemble the input than do the results in Figure IO, 
where the anomaly appears to be rotated. 

Real data 
Filtering of a Bouguer &ravity data set from north-central 

Alberta has been performed by polynomial approximation. 

Fig. 8. Same as Figure 7 using a square polynomial with n = 5, 

r 

mu, i”w”21 = 0.2 moli 

5 9 1, 17 21 25’ 

1 

Fig. 9. Gravity anomaly of a rectangular parallelepiped. The spatial 
indices i (corresponding to w) and j (corresponding to v) correspond to 
those in equation (13). The source body is outlined by the bold 
Square. 

The data are a subset of the Bouguer gravity anomaly map of 
Canada (Goodacre et al., 1987). The grid was extracted in 
digital form and comprises 75x75 points with a 5.km grid 
interval. These data are shown in Figure 12. The most promi- 
nent feature on this map is an approximately 170.km x 60- 
km feature trending north-south (in the northern portion) and 
southwest-northeast (in the southern portion), with a mini- 
mum relative value of -9X mGal. It has been named the Trout 
Mountain Low (Walcott and Boyd, 1971). Burwash and 

CO”l”“I i”lec”d = u.2 “Gd CO”l”“I i”lec”d = u.2 “Gd 
‘1 5 9 ‘1 5 9 

A A 
13 17 21 13 17 21 25l 25l 

i i 

Fig. 10. Triangular polynomial with n = 7 computed by least-squares Fig. 10. Triangular polynomial with n = 7 computed by least-squares 
approximation to the anomaly in Figure 9. The spatial indices i (corre~ approximation to the anomaly in Figure 9. The spatial indices i (corre~ 
spending to x) and j (corresponding to y) correspond to those in spending to x) and j (corresponding to y) correspond to those in 
equation (13). equation (13). 
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Fig. Il. Same as Figure 10, using a square polynomial with n = 5. 
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Power (1990) attribute this feature to a granitic pluton, 25 
km thick, emplaced in a granulite-facies country rock. This 
residual low is embedded in a long-wavelength component 
that generally decreases to the southwest. 

The long-wavelength component of the Bouguer anomaly 
field in this region of Alberta has been examined in a number 
of studies and several models have been proposed to explain 
its origins. Sprenke and Kanasewich (1982) imaged a rela- 
tive decrease to the southwest on a middle-wavelength (500. 
1000.km bandpass-filtered) Airy anomaly map and 
attributed it to either a topographic high on the Moho or 
anomalously high mantle densities. Stephenson et al. (1989) 
resolved a gradient with a relative decrease to the southwest 
on a 400.700.km bandpass-filtered Airy anomaly map. This 
trend was thought to be due to crustal thickening beneath the 
Rocky Mountains. Burwash and Power (1990) ascribe the 
regional field in the vicinity of the Trout Mountain Low to 
both crustal thickening and to effects of the Peace River 
Arch. 

For this study, a suite of low-pass filtered Bouguer 
anomaly maps with cut-off wavelengths ranging between 
I25 km and 1000 km were generated in order to separate the 
Trout Mountain Low from the regional field. It was found 
that a 25(1-km long-wavelength map, shown in Figure 13, 
removes the signature of the Trout Mountain pluton, while 
depicting a relative local low, near the centre of the map. 
superimposed on a longer-wavelength field that decreases to 
the southwest. This regional field can, to a certain extent, be 
reproduced by polynomial approximation. This illustrates the 
efficacy of polynomial approximation for performing a 
regional/residual separation. Several regional fields were 
computed by polynomial approximation and the results of 
wavelength filtering (Figure 13) were best reproduced by 
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Fig. 12. Bouguer anomaly data from north~central Alberta. TML 
denotes the Trout Mountain Low discussed in the text. 

using n = 3 in equations (I) and (2). This is not surprising. as 
the passband measurements indicate that for a 75x75 grid 
with a 5.km grid interval, least-squares approximation passes 
wavelengths between approximately 200 and 300 km. 
depending upon polynomial type, orientation and grid loca- 
tion. The results of polynomial approximation are shown in 
Figures I4 and 15. 

With the exception of the data near the edges of the grid, 
where the passbands are considerably greater, the data shown 
in Figures I4 and IS generally resemble those shown in 
Figure 13. However, there are some important differences. 
For instance, the results using the triangular polynomial, 
shown in Figure 14, do not properly resolve the relative high 
near the centre of the map. This is because. as shown in 
Figure 13, this feature trends predominantly northeast, 
oblique to the grid. Because triangular polynomials degrade 
high-frequency features that are not parallel to the axes, this 
high, which comprises relatively short wavelengths, is poorly 
represented on Figure 14. On the other hand, square polyno- 
mials have a larger passband parallel to this regional trend. 
As a result. the long-wavelength component is reasonably 
well-reproduced on Figure 15. However, there is some dis- 
crepancy between the trends of the regional fields shown on 
Figures I3 and IS. This may be because the relative high on 
the low-pass filtered data s how in Figure I3 does not trend 
exactly parallel to the direction of maximum passband of the 
data on Figure 15. This could result in the apparent rotation 
of the regional field on Figure 15. 

It may be argued that the regional field in Figure IS 
[equation (2)1 is superior to that of Figure I4 [equation (I)] 
because more degrees of freedom are included in its approxi- 
mating polynomial. However, it can be shown that it is not 
possible to correctly compute a regional field, using triangular 
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Fig. 13. The data shown in Figure 12 after low-pass filtering to elimi- 
nate wavelengths shorter than 250 km. 
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polynomials, that correctly depicts the long-wavelength 
northeast-southwest trend even if more terms are included in 
the approximating function. This is demonstrated by Figure 
16 which shows the results of using a fourth-order triangular 
polynomial. Increasing the polynomial order increases the 
passband along the axes resulting in the inclusion of the low- 
frequency component of the north-south trending Trout 
Mountain Anomaly in the regional field. 

SUMMARY AND C0NCLUS10NS 

tt8’w 114’w 
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Determining the regional component of potential-field 
data usually entails suppression of high frequencies and 
enhancement of low frequencies. One method for doing this 
is least-squares polynomial approximation. We have investi- 
gated the filtering characteristics of two forms for the 
approximating function for least-squares approximation for 
data in two independent variables. To do this we formulated 
this operation in tertns of convolution and subsequently com- 
puted Fourier transforms of the impulse responses. 

This study reveals several properties that should be con- 
sidered when evaluating results of this technique. These are: 
I) Anisotropy in the passband. That is, the passband width 

varies depending upon anomaly orientation. For triangular 
polynomials passbands are narrower for signal oblique to 
the axes, whereas for square polynomials passbands are 
wider. The amount of anisotropy can be reduced by using 
more grid points and lower-order polynomials. Also, 
square polynomials are less anisotropic and thus may he 
preferable. Real and synthetic data tests suggests the 
anisotropy may lead to incorrect orientation of the 
regional field. 

2) High-pass wavenumbers decrease with increasing grid 
size and decreasing polynomial order. The variation in 
pessband width decreases as the size of the data array 
increases, limiting the flexibility of polynomial approxi- 
mation for large data grids. 

COntmu interval = 2 
0 5” tw knl 

Fig. 14. Triangular polynomial with n = 3 computed by least-squares 
approximation to the data shown in Figure 12. 

3) Directional bias occurs when there are unequal numbers 
of data points along the two sides of the grid. 

4) The impulse response, and as a consequence the pass- 
band, is spatially variant. 

56’N 
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Fig. 15. Square polynomial with n = 3 computed by least-squares Fig. 16. Triangular polynomial with n = 4 computed by least-squares 
approximation to the data shown in Figure 12. approximation to the data shown in Figure 12. 
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5) There is quasi-linear phase distortion in the passband. 

This distortion increases and departs from linearity as the 

frequency and radial distance from the centre increases. 

Hence, results are unreliable in the vicinity of the edges of 

the grid. 

In light of these characteristics, we suggest that automated 

separation be done by linear digital filtering. 
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