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NM0 DISTORTION 

D. BJERSTEDT’ 

AHSECACT 

A complete clarsificaiion sysrem for disiwtion produced by xc- 
ond~ordrr NM0 application is dcvetoped. hequalities which pm 
duce the distortion classification as a function of Lilne fur any given 
NM0 function an* sample i”,erYa, are presented. Equations 3re 
dr”rt,qxd w,k+l give tile imattest orsri at which a given Gnl”“nt <If 
dismnion “CCWS for each cla*s of *isrortion. A new type of display 
which permits easy ~isuati~ation and compariwn of distortion class 
for one or more NM0 functions is presented. 

INTR~DUCTOHY REVIEW OF SOME NM0 AND SIXSMIC 
VELOClTY BASlCS 

Most data interpreted by geophysicists consist of stacked 
traces. Before stacking, each trace in the stacked gather is 
corrected (by time shifting sample or interpolated values) to 
produce an approximation of a zero-offset trace hy applying 
the standard NM0 equation: 

f(X) = (2/L” + l’(O))“’ 

where: 

(1) 

x is the source to receiver distance (also called the 
offset); 

t(0) is the event arrival time for an offset of zero: and 
LI is a parameter with consistent units of velocity. 

This equation is derived using the geometric properties of 
right angle triangles t” find the arrival time of a rrtlected ray 
in a single layer subsurface having zero dip and a constant 
isotropic velocity I’. The actual NM0 (normal moveout) 
correction applied at offset x and for time r(O) is a time shift 
of sire t(x) - t(O). 

Despite the extraordinary simplicity of the model from 
which it is derived, the NM0 equation is routinely used 
(with adjustments to the velocity parameter) in exploration to 
correct data recorded in areas with complex geology. A brief 
justification for this follows. 

A model with a single dipping layer will have an NM0 
equation of the same form as equation (I ). In this case, the I’ 

term must be replaced by ~,/cos(fJ) wherr theta is the geologic 
dip (not the apparent time section dip). Here, it is implicitly 
assumed that the offset x is restricted so that the entire tmvel 
path of the ray falls within the triangular wedge formed hy 
the dipping boundary. Note that because the cosine of ten 
degrees is about O.YX, the size of the NM0 correction does 
not change very much for small dips. This makes the NM0 
equation, even without dip c”rrecti”n, a fairly robust approx- 
imation for the purposes of making a dynamic correction f”l 
offset. Provided that the proper (dip adjusted) velocity 
parameter is used, the correction is also robust for linear 
dipping retlections in the single layer case. 

For a subsurface that comists of N homogeneous zero dip 
houndarics, it can he shown that the exact equation for cor- 
rections approaches the standard NM0 equation as x 
approahes zero so long as the velocity term L. is replaced by 
the root-mean-square velocity (rms velocity. defined below) 
of the event being corrected. 

Therms velocity associated with an arrival time is an arhi- 
trary mathematically defined quantity that is related 10 the 
model layer velocities (and. implicitly, a ray-path) as fol- 
lows: 

Strictly speaking, this quantity has B meaning only with 
respect to a specific ray, since in this definition fi is the 
travel-time in layer i and this time depends on the raypath 
which is different for each offset. 

For the purpose of stacking data from flat layered models, 
the raypath is implicitly chosen t” he that of a vertical ray. 
For this reason, we may think of equation (2) as defining the 
rms velocity of the model or, equivalently, “I’ the model 
record. For dipping linear layers. the relevant ray for each 
event is the normal incidence zero-offset my. 

From experience, we know that if snme type of statistical 
velocity analysis such as a velocity spectrum is done on a 
model record, the observed velocities are, for most realistic 
models, within about ten percent of the rms velocity as 
defined above. In certain cases such as those with high- 
velocity surface layers (e.g., permafrost) or with very low 
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velocity Layers, the rms equation for a zero-offset ray may no 
longer relate in any simple way to the observed stacking 
velocity derived from a statistical method. 

Even greater errws may occur in such cases if the rms 
equation is rearranged in order to deduce interval velocities 
from the observed velocity analysis. In such cases, there is 
no longer any simple useful relationship between the layer 
velocities, the arbitrarily defined rms velocity of a zero- 
offset ray and a statistically determined stacking velocity (for 
example, from a velocity spectrum). Additional difficulties 
occur if boundaries are curved, if near-surface statics are 
significant, if the layer velocities are anisotropic, or when 
some of the energy arrives from out of the plane of the 
section. 

The appropriateness of the velocity corrections applied to 
traces before stacking is probably the most significant single 
determinant of the final quality of seismic sections. This fact 
makes the control of errors and distortion that may occur in 
the NM0 step critically important. 

For the rest of this paper, we will assume that the standard 
NM0 equation presented above, with a suitable velocity 
parameter, is being used to correct seismic traces and we will 
he concerned only with problems, such as distortion, that 
arise due to its fundamental properties. A similar analysis 
may he conducted for cases that require a modification (such 
as a shift of the origin of the coordinate system) of the 
standard NM0 equation or for other low-order nonlinear 
equations than might be used to make dynamic corrections. 

OUTLINE OF Awt.wIs 

1) Asymptotic behaviour of the NM0 equation will be 
pointed out as an aid for visualisation of NM0 curve 
behaviour at far offsets and for use in NM0 distortion 
classification. 

2) Two major classes of NM0 distortion that can be con- 
trolled with offset-constrained NM0 will be presented. 

3) Equations will he presented which give the minimum off- 
set at which a specified amount of distortion occurs for 
each of the distortion subclasses. 

4) A complete set of subclasses for NM0 distonion will he 
described so that it is clear how software may be written 
to constrain the amount of distortion that occurs when 
NM0 is applied. 

Asu~~“rortc BEHAVWUR 

The equation f(x) = (x’lv? + r*(O))“’ is an expression in 
Cartesian geometry for one of the standard conic sections, 
namely the hyperbola. It has been known since the time of 
the ancient Greeks that this curve is asymptotic to a straight 
line. This result is a trivial one if we examine the behaviour 
of the ratio (x2/,,*)“’ / (x%~ + r*(0))‘fi. This ratio obviously 
approaches I as x approaches infinity since it is equivalent to 
the equation (I/v*) / (l/v2 + t?(O)/r’) in which t(O) and I’ are 
constants with respect to x. 

It is also obvious that the numerator of the ratio reduces to 

CllC 

x/a which represents a straight line with slope I/v through the 
origin of the coordinate system. 

Slowness 

It is often convenient to use the slowness parameter s 
rather than the velocity parameter v. 

Using the definition s = l/v, the standard NM0 equation 
may be written: 

t(x) = (.?r’ + t’(o))y 

and the equation of the asymptote is: 

(3) 

Iii) = .5.x (4) 

It is clear that the slowness parameter s is also the slope of 
the hyperbola’s asymptote. 

Using asymptotes to classify far-offset distortion 

Type I - If r,(O) and t?(O) are two different arrival times 
which have associated velocity parameters v, and v2, respec- 
tively, then if v, = v> , we know that the standard NM0 
curves for both arrival times are asymptotic to the same line 
having slope s = l/v, = I/v,. This immediately tells us some- 
thing significant, at least fir far offsets, about NM0 distor- 
tion for the seismic data between the two arrival times, 
namely, that the time between the curves after NM0 correc- 
tion will be greater than before correction. This is commonly 
referred to as NM0 stretch, and it is now clear that we have 
found one situation in which this particular type of distortion 
will occur, namely at far offsets when event pair velocities 
are equal (see Figure I for an example). 

cvpe 2 If r,(O) and fZ(0) are two different arrival times 
which have associated velocity parameters L’, and v2, respec- 
tively, then if L’, < vz and t,(O) < r,(O), we know that the stan- 
dard NM0 curves for the arrival times are asymptotic to two 
different lines having slopes S, and s2, respectively, and that 
S, > .s?. It is clear that since the second curve starts (at zero 
offset) at a later time than the first, but becomes asymptotic 
to the line with the smaller slope, that the two curves must 
cross at some offset (see Figure I for an example). 

Near. and inside the crossing point, the curves will con- 
verge. Near, and beyond the crossing point, the curves will 
diverge. If NM0 is applied beyond the offset at which 
crossover occurs, the result will be a time reversal which we 
presume should always he avoided. We know from geologic 
principles and from observations in well logs that layer 
velocities tend to increase with depth. Since the layer veloci- 
ties play a major role in determining the NM0 velocity 
parameter. we also observe that the NM0 velocity parameter 
also tends to increase with increasing arrival time. For this 
reason. we should expect that Type 2 distortion will he the 
most common potential problem (as well as being one of the 
two. as we will see, most serious). 

Fortunately, recording offsets are often restricted such that 
much of the seismic record may be corrected using the 
standard NM0 equation without catastrophic errors (such as 
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Divergent 
Vl >v2 
Sl <s2 

Crossing 
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Fig. 1. Asymptotic behaviour. 

time reversals) even if the NM0 program does not restrict 
itself to making corrections only for properly restricted off- 
sets. As we show below, there is no need to rely on good for- 
tune since the offset at which crossover occurs is easy to 
determine and to program as a constraint into NMO-correc- 
tion software. 

Type 3 The only remaining case (for far offsets) is simi- 
lar to Type 2 except that v, > v2. In this case, the two NM0 
curves will diverge (without time reversal) at far offsets. The 
NM0 distortion will be a compression for far offsets (see 
Figure I for an example). 

DIST~IRTION CLASSES 

We will distinguish two major classes of NM0 distortion, 
namely, global and local which arise from fundamental non- 
linear properties of the standard NM0 equation. 

Global (or catastrophic) distortion 

This type of distortion will occur if trace data from offsets 
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equal to or greater than the crossover distance is NM0 
corrected. Wr know from the discussion above concerning 
asymptotes that this problem is associated with the condition 
1’, < L’*. 

The results of this type of distortion include: 
(a) time reversal of wavelets: 
(b) singular (crossover) points at which the distortion magni- 

tude is numerically infinite; 
(c) multivalued mapping in which energy that should be 

stacked at some specific time is also moved to, and incor- 
rectly contributes to the energy which is properly 
corrected to and stacked ilt, some other time. 

See Figure 2 which illustrates the effects of global distortion. 
The term global distortion is perticularly suitable for cases 

in which r, < v, and the event pair times are “considerably 
different”, thai is, much greater than the smallest time 
interval for which the seismic wavelet can resolve two 
different events. As an example, suppose that the energy for 
a Tertiary event should be stacked at a time of 1.0 seconds 
and the energy for a Mississippian event should be stacked at 
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I.8 seconds. If the stacking velocity of the deeper event is 
greater, as is most likely the GIST, and if long enough “ilets 
OCCUI in the traces that will br NM0 corrected and stacked, 
then the two events will cross. At the crossing point, if 
unconstrained NM0 is used, energy from both events will be 
moved to both event times. 

If one of these events is significantly stronger, the damage 
that results is worse for the weaker event. Beyond the 
crossover oflset, cncrgy from other events will be similarly 
moved to more than one zro-offset time and. subsequently, 
stacked at both the correct and at one or more incorrect 
times. In geology, one avoids mixing samples from the 
Mississippian with those from the Tertiary. In geophysics, 
one should be at least as careful to avoid analogous errors 
that may occur when applying NMO. 

Local distortion 

Local distortion is defined as the distortion that is calcu- 
lated with respect to an event pair that has a “small” differ- 
ence in zero-offset arrival time. We will in fact define local 
distortion to be the calculated distortion for an event pair that 
has a time separation of exactly the seismic trace sample 
interval. This i> suitable since this interval is smaller than the 
minimum time interval that a real seismic wavelet can 
resolve. It also provides a numerical value for distortion that 
is useful to provide a practical constraint for NM0 offsets in 
programs which typically interpolate between trace samples 
in order to obtain an event amplitude to he time shifted to the 
event‘s zero-offset time. 

Next, an equation for the crossover offset will be 
presented. Then, we present a complete classification system 
for NM0 distortion for both near and far off%% and equa- 
tions that give the maximum suitable offset for a specific 
selected amount of distortion. 

The ero~sover offset 

By equating the standard NM0 equations for two events 
with different zero-offset times T,, Tz, we can solve for the 
offset x of crossover using elementary algebra provided that 
the conditions T, < T, and v, < v2 (i.e.. .x, > .x3) hold. The 
result is: 

x = ((T,‘- T,‘) / (.q? .s~~))“‘, T, < T2, s, > s, (5) 

It is obvious from the symmetry of hyperbolas about the time 
axis that both +.I and -x are solutions for cases in which 
signed offset distances arc used. For those using this equation 
in software, the standard techniques to avoid loss of numeri& 
cal precision for expressions like this should he ohserved. 

THE GICNF:RAI. OFFSET FOR A SPKXFIC DISTORTION 

Table I provides a classification of distortion for fa off- 
sets. This system is based on asymptotic behaviour and is 
valid because two NM0 curves must either converge or 
diverge monotonically after a certain offset is reached. As it 
turns out. for near otTsets. two NM0 curves may converge 

over some range of offsets before they begin to diverge. This 
cauxs the classification of distortion and the calculation of 
the offset for a given distortion to he slightly more complex 
for the near-offset region, as we will see in this section. 

Table 1. Asymptotic (far offset) event pair behaviour. 

Condition Behaviour DistoOion Catastrophe 

v, c v2. s, > s2 cross compression Time Reversal, singularity 
VI = VP s, = s2 converge Stretch None 
“, > “2. s, c s2 Diverge Compression None 

Magnitude of distortion defined 

S/rerrh Case - Here the time difference for two exnts is 
larger after NM0 is applied. 

Percent distortion: Ps = 100 ((AI(.K) -At(O)) /At(O)). (6) 

Cornpre.ssion Case - Here the time difference for two 
events is smaller after NM0 is applied. 

Percent distortion: PC = IO0 ((At(O) At(x)) I Ar@)) (7) 
0,. 

-PC = 100 ((At(x) At(O)) I At(O)). (8) 

Here we define At(O) = r,(O) - r,(O) and AI(.X) = r&r) - f,(x). 

The ratio P = P.~/100, for the stretch case, or P = PdlOO 
for the compression case. will also he useful notation in the 
following development of the offset equation. 

We now summarize a method for finding the general 
equation for offset .r with a specified distortion ratio P. 

In the stretch case (equation 6), we have a specified Ps 
and calculate P = P.rllO0. Substitution into equation (6) and 
rearranging gives: 

(P + I) At(O) = At@) 
= t,(x) - f , C.1) 
= (s2?r? + f2’(0)j”~ - (S,Y + t,‘(O))y’ 

Now make the convenient substitutions: 

y =,$; 

Ti = q’(O); 
o; = s,? and 
b = (P + I) At(O). which is a constant with respect to x. 

We now have: 

p=(~2?.+7;)‘;~-(~,?+T,)‘:‘, 

which we must solve fory. 

(91 

Note that since the NM0 hyperbola is symmetric about the 
time axis. if x is a positive offset at which a specific amount of 
distortion occurs, then the same amount of distortion will also 
occur at an offset of--i. The substitution y = r? made above, 
“hides” this symmetry. that is, we must remember that if we 
find IZ nonzero solutions for equation (9) there will actually he 
2,~ signed nowzro solutions for .‘i due 10 thr hidden symmetry. 
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After some tedious elementary algebraic manipulation, 

equation (9) leads to a more tractable standard expression, 
namely: 

uy2 + by + c = 0 , 

where 

a = (Is* q*; 

(10) 

b = 2(o,(T, -k-T,) + oz (T2 + k - T,)): and 

c = (T2 - T,)* + 2k(Tx - T,) + k’, 
with k = @). 

We are interested in real values of y such that 0 < y < -. 
We note here that equation (10) will in fact be valid also 

for the compression case as we can see by comparing equa- 

tions (7) and (8). The point is that in one case for equation 
(9) we will have p = (P + l)At(O) and for the other have p = 

-(P + l&(O) but only pz appears in the equation that deter- 

mines the coefficients a, band c of the quadratic. 
Equation (10) is the standard quadratic equation which has 

the well-known algebraic solution(s): 

y = (-b * (b* - 4nc)“‘) / 20 , ato. 

Once y is known, the required symmetric signed offsets I 
may be calculated from x = ey”‘. If there are two real values 
of y which satisfy equation (I 0), then we must be careful to 

select the smaller one as the NMO-offset constraint [see case 
(c) below]. 

A COMPLETE SET OF FOUR SUBCI.ASSES FOR NM0 
DISTOR1‘ION 

Case (a): v, = v2 - the monotonic convergence case 

It is clear by back substitution that a = 0 if and only if v = 
v2. In this case, equation (IO) reduces to the linear relation- 
ship: 

by+c=O, (II) 

which can have only one solution for y. namely y = -clb. 

Since there is at most one solution and we know that in this 

case the two curves are both asymptotic to the same line, it is 
clear that for this case the two curves must converge mono- 
tonically. 
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Case (b): v1 > v2 - the monotonic divergence case 

We know that if v, > v2, the two NM0 cwws diverge for 
far offsets and that divergence causes a compression distor- 
tion. The condition for monotonic divergence is that equation 
(10) have only one real root with v, > v2. A criteria for this 
case will be given in the discussion of case (c)below. 

Case (c): v, a v2 - the converge-diverge case 

This is the only case in which there may be two different 
offsets with the same amount of distortion. The two NM0 
curves must first converge and then diverge since we know 
that for far offsets they diverge. In this case, equation (IO) 
will have two real roots and the time difference for the two 
NM0 curves will have a local minimum for some nonzao 
offset. At a local minimum, the derivative of the expression 
for time difference will be zao; that is, we must have 

After substituting for At(O), differentiating and rearranging 
we have 

x = (a)“’ 

where: 
a = (o,*T, - o,2T2) I (O,%, - o,%q 

It is clear that x is real if and only if a > 0. 
After some substitution and manipulation, we observe that 

there can only be one consistent set of conditions for which 
a>o: 

.s,/s, < r,(O)/r,(O) and s, < s2 

These conditions are equivalent to V#J, < r,(O)/(t,(O) + Af) 
and v, > v2 where we define Af = r*(O) - t,(O) so that Af > 0. 
This set of conditions is very useful when we examine the 
local distortion for time t,(O) in which case we identify Af 
with the sample interval. 

If there is no local nonzero real minimum, it is clear that 
the two curves must diverge monotonically and the global 
minimum time difference is at zero offset. This is case (b) 
above for which we have the criteria: 

vz/v, 2 t,(O)@,(O) + At) and v, > v2 

Using these criteria, it is easy to display a distortion classifi- 
cation chart for any NM0 velocity function and a given trace 
sample rate. Figure 3 is an example of such a chart. 

Case(d): Y, < v2 - the crossover case 

In this case, we know that the curves will cross and that 
we must apply NM0 corrections only for offsets less than 
the crosscwer distance in order to avoid catastrophic errors. It 
is also clear that the NM0 distortion will be of the stretch 
type inside the crossover offset. Since we saw in case (c) 
above that there can be more than one real root only for 

cases in which v, > vz and t,(O) > t,(O), we see that the two 
curves must monotonically converge inside the crossover 
distance and monotonically diverge in the time reversal zone 
beyond the crossover distance. 

Table 2. Complete NM0 distortion classification. 

Case Type Criteria Comment 

(a) Monotonic- v2 = v1 Stretch 
converge xp= + (-db)“’ 

(b) Monotonic- v2 c v1 Compression 
Diverge qv, < ~,W(~,(~~ + AI) 

(C) converge- vz < v, Compression (xc minimum) 
Diverge vJv, L f,(O)/(f,(O) + An Minimum at (a)“’ 

(d, Crossover v2> v, Stretch (xc crossover) 
cross at ((r*~rIz)/(sI’s#‘~ 

Much of the information contained in Table 2 is graphi- 
cally illustrated in Figure 3 in which a specific NM0 velocity 
function is analyzed. The basic local distortion chart can be a 
valuable tool for analysis of distortion, particularly if other 
curves are presented on the same chart. Some of the more 
obvious posstbdmes are (using colour): (I) plot several veloc- 
ity curves together; (2) plot distortion for different values of 
zero offset time differences; and (3) plot crossover distances. 

SUMMARY 

The standard NM0 equation f(x) = (x2/v2 + r*(O))“? is 
equivalent to the equation t*(x) = x2/v2 + r2(0) which we rec- 
ognize as an hyperbola. Although this is a nonlinear relation- 
ship between the variables x and r, its familiarity and appar- 
ent simplicity can easily lull the user into a false sense of 
security. When using any nonlinear relationship, we must be 
constantly on guard for unexpectedly complex properties and 
difficult numerical behaviour. 

We should keep in mind that most of classical physics 
may be described with nothing more complex than second- 
order equations and that these equations are capable of repre- 
senting some very (at first glance) nonintuitive phenomena. 
Recent numerical and analytical research has revealed, for 
instance, that very exotic computational problems are 
encountered when computing orbits using ellipses and other 
tonics. This is still an active area of research despite the fact 
that this is one of the first problems “solved” using the ana- 
lytical methods developed by Newton. 

When a nonlinear relationship is used as the basis for a 
critical processing step involved in data reduction, we should 
automatically suspect that the position of the process 
(especially relative to other nonlinear processes) in the flow 
should be carefully evaluated. This follows from the basic 
mathematical fact that nonlinear operations do not in general 
commute. In the case of NM0 application for seismic data, 
since this is the single most critical step for determining the 
final quality of the stacked data to be interpreted, only the 
very safest and conservative practices known to the user and 
software developer should be used. 
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