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AN EXAMPLE OF THE COMPUTATION OF EDGE DIFFRACTED WAVES 

J.B. GALLOP AND F. HRON 

All8lXACI 

WC present the application of the theory of cdgc dilfriictcd wiwcs 
to the Amoco rnodcl, for tile P-S” case. WC show how 1” Cil,C”,“,C 
some nf the terms in Ihc cdgc wiwc formularion. including wwc 
polarisation, and the coniinu*tion of both the geometrical eikoni 
and geometrical ampliludc into hc shadow LOIIC. Seisnqpms from 
zero order Asymptotic Kay Theory WC~C umputed horh kth and 
without edge waves, to show lhow necessary the lutcr UC IO come 
plcre Ihc sotuliun. WC focus on Ihc step by step consI~~~clion 01~ a 
smooth solution for IWO 01 the arrivals wing a wmhinarion of edge 
waves. ‘This provides insight into the umditiom, prcsenl in c11c zero 
order solution which indicate the prcencc o/ diflractcd wwc\. It 
ah drmonstrares a limitation of the tiwxy <II cdgc wwcs in it corny 
plen model; specifically, when shadou’ boundaries approach inkr~ 
fdccs tangcntiidly, boundary condiriow are not satisfied by the edge 
wwcb. Finillly, WC give an cnimplc of ~4 sitnation involving interface 
complications, where 8 suhsct d primary ~iiffr;~crcd waves cimnot he 
desrrihed using the edge waw fmnula&m 

The lack of a useful description for diffracted wwcs in 

Asymptotic Ray Theory (ART) has heen a drawback of the 

method for many years. Keller (1962) originally proposed the 

geometrical theory of diEaction which corrected some of the 

shortcoming. However, these diffracted WBYCS dcpcnd on a 

diffraction cocfficicnt (csscntially a dircctivity pattcm) which 

is singular at the shadow boundary, the surface dividing the 

illuminated and the shadow zones. They also do not rectify the 

discontinuity in the geometrical wve (the zero order AR1 

solution) located at the shadow boundary. Boundary layer 

techniques (see for example Zauderer, 1YYO) can be applied in 

the narrow region surrounding the shadow boundary. Klem- 

Musalov (1984) and Bakker (IYYO) have successfully derived 

the shadow boundary layer solution [or seismic diffracted 

waves (edge waves) in a convcnicnt, gcncral form to hc used 

in conjunction with ART. Klaeschen et al. (lYY4) have dcvcl- 

oped a scheme to incorporate these diffracted waves into exist- 

ing automatic ray tracing pro&rams. The application of the thc- 

ory of edge waves to a particular model can bc complex, so we 

present an example here to examine some of the details. In this 

way we can appreciate the usefulness of edge waves in models 

that gcncratc significant diffractions, and also look at some of 

the limitations of the theory, keeping in mind more general 

geologic situations. A summary of the theory OS diffracted 

cd&c waves, including elaboration of some technical points, is 

given in Appendix A. In places it will be necessary to look at 

the formulation for diffracted waves, and hcrc we shall refer to 

equations of Appendix A. 

NUMERICAL EXAMPLE 

The rxamplc WC present employs the Amoco model used 

earlier by Hron and Chan (1994), who studied SH diffracted 

waves. It is a simplified version of a tar sands deposit in 

northern Alberta, which was used by Amoco researchers to 

determine the experimental and theoretical role of diffracted 

waves in field records (Hron and Covey, 1988). Here we 

investigate the P-SV case rather than the SH cast. The model 

itself (Figure I) is two dimensional and is composed of a box 

shaped low velocity zone emhedded in a constant velocity 

layer hetween two half spaces. The vertical component 

rcccivcrs and the impulsive source are huried to avoid free 

surface effects. ‘The ratio of P-wave to S-wave speeds is 1’3 

The source wavclct is dcscrihcd by: 

f(t) = A sin(2rrt)e-(2t)‘- (1) 

where A is constant. Multiples and head wwcs wcrc not ~111. 

culatcd in the seismograms. Figure 2 contains the zero order 

ART results for this model. There are 12 geometrical body 

WBYCS calculated here (each with a different type of raypath). 

and the dominant six are labelled. Figure 3 contains the ray 

diagrams corresponding to thcsc arrivals. Many discontinu- 

itics arc prcscnt in Figure 2, and it is clear that standard ART 

provides a very unsatisfactory solution. The wavefield with 

diffractions included (Figure 4) has all discontinuitics 

smoothed using 30 unique diffracted wave contributions 

(each one is defined by the geometrical body wave disconti- 

nuity it smooths). The advantage of the Amoco model is that 

it presents several different cases of diffraction and we can 

use these to study the application of diffracted waves. We 

shall look at two arrivals in a detailed manner. 
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Fig. 1. The 50 called Amoco model used for computation of synthetic 

seismograms. The densities are equal to unity everywhere. The 
speeds indicated are for P-waves. The line RR’ represents 60 equally 

spaced vertical displacement geophones. 

The first is a P-wave reflection from interface L2, labelled 

(2) in Figure 2. The geometrical rays (Figure 3) are com- 

pletely truncated by the vertical interfwxs AC and BD. The 

corner which terminates the reflections (A or B) gives rise to 

diffracted waves which smooth the transition from the pres- 

ence to the absence of a reflection. The geometrical eikonal 

and amplitude are discontinuous across the shadow bound- 

ary, which divides the illuminated and shadow zones. The 

shadow boundary is represented by the last ray in the geo- 

metrical set of rays which approach the diffracting corner 

from a particular direction. In Figure 5 (bottom) we see the 

effect of adding the diffracted waves (labelled 2a) generated 

when the shadow boundary ray is the last geometrical ray 

whose path lies to the left of the vertical interface. Figure 5 

(top) is a ray diagram illustrating this. The geometrical 

reflection is still incomplete, and more diffracted waves are 

needed. The last geometrical ray lying to the right of the ver- 

tical boundary (top of Figure 6) is a shadow boundary ray, 

and when we include the diffractions caused by it (labelled 

2b) the zero order approximation reflection becomes nearly 

complete (bottom of Figure 6). There still exists a small dis- 

continuity in the wavefield, located around 23 seconds at an 

offset of 4.7 km. It is here that the diffracted waves (2b) are 

themselves truncated by the vertical interface AC. We can 

introduce secondary diffracted waves at point A correspond- 

ing to the rays in Figure 7 (top) to smooth this. The shadow 

boundary ray in this case is a primary diffracted ray that 

travels vertically down from the point of diffraction (A), 

reflects at the interface L2 and travels upwards striking point 

A again causing secondary diffracted wwcs. The result is 

Fig. 2. The zero order ART response to the Amoco model. No multi- 
ples or diffractions are included. The six largest wntributions are 
labelled here and described in the text. Their raypaths (using corre- 
sponding labels) can be found in Figure 3. 
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Fig. 3. Ray diagrams containing sample rays for the six dominant 
arrivals of zero order ART for the time frame shown in Figure 2. 

Diagrams are not to scale. All arrivals are P-waves except (6). where 
the dashed ray segment indicates cOnversion to an S-wave. The 
numbers shown correspond to the labels in Figure 2. 
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AN EXAMPLE OF THE COMP”TAT,ON OF EDGE DtFFRACTED WAVES 

Fig. 4. The zero order ART solution to the Amoco model with 
diffracted waves included. Careful application has removed all dis- 
continuities from the zero order ART solution. 

shown in Figure 7 (bottom) and labelled (2~). Although these 

particular secondary diffracted waves seem to complete the 

wavefield adequately, we expect some additional error has 

been introduced. This is because the shadow boundary ray 

travels along the interface AC, and boundary conditions are 

not satisfied here without the presence of another wave trav- 

elling along the left side of AC. In our numerical example 

this is a relatively small defect, since the amplitude along the 

boundary rey in Figure 7 is low (it is near the edge of the 

shadow boundary layer). However, this represents one of the 

limits from the theory of edge waves; specifically, when an 

interface runs nearly parallel to a shadow boundary ray, 

boundary conditions are not satisfied and equation (A-3) is 

not correct to 0(1 / iw). (Equation (A-3) gives the formula 

for geometric and diffracted waves in the boundary layer). 

The second case we shall consider is the P-wave reflection 

from the top interface Ll (labelled (1) in Figure 2). The 

shadow boundaries are defined by the rays reflecting from 

interface Ll at the points A and B. Unlike rcflcction (2), 

across the shadow boundaries the eikonal for reflection (I) is 

continuous and the geometrical wave doesn’t vanish (it 

changes amplitude according to its reflection coefficient). 

The solution offered by equation (A-3) decays to zero in the 

shadow zone (see Figure IO), where no geometrical wave 

exists. In Figure 2 we see that a geometrical wave is present 

on both sides of the shadow boundary, the latter being visible 

in the seismograms where there is a reversal of polarity in 

the reflection. Hence to use equation (A-3) we need to break 

up the reflection into reflected ray groups lying to the left and 

right of each corner. Each of the two groups is defined by the 

continuity of its reflection coefficient. Kincmatically each 
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Fig. 5. (top) Ray diagram (not to scale) showing the diffracted rays 
(dashed) from point B that smooth arrival (21, the P-wave reflection 
from the bottom interface (L2). The boundaly ray is shown as the 
solid line. Note that diffractions of the same type cvxur at cwner A. 
(bottom) Seismograms of the geometrical arrival (2) with diffracted 
waves from ccmers A and B. labelled (2a). 

group is identical at the shadow boundary, leading to a con- 

tinuous eikonal. Focussing on corner A (which produces the 

leftmost discontinuity in reflection (1) in Figure 2), we can 

use equation (A-3) by first making 6, the geometrical ampli- 

tude associated with the rays reflecting from interface Ll to 

the left of point A. The diffracted amplitude decays in the 

shadow zone to the right of the shadow boundary ray (Figure 

8, top). Similarly, for the other diffracted wave we mekc fi,, 

the geometrical amplitude associated with the rays rcflccting 

to the right of point A (see Figure 8, bottom). We can now 

appeal to the principal of superposition and combine the two 

as shown in Figure 4, where there is a smooth transition from 

one reflection coefficient to another across the shadow 

boundary. In our model the change in polarity emphasizes 

this transition. 
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Fig. 6. (top) A ray diagram for the diffracted waves (dashed) originat- 
ing at point A that smooth arrival (2). The boundary ray is shown as 

the solid tine. Similar diffractions originate at corner 6. (bottom) 

Seismograms of the geometrical arrival including the diffracted wa”e 

(a) and the above type of diffracted wave, labelled (Zb). 

The previous two examples demonstrate that the presence 

of diffracted waves can be identified by sharp changes in 

geometrical wave amplitude or travel time. This fact was 

recognized by Klaeschen et al. (1994), and used in their 

automated 2-D ray tracing scheme which augmented stan- 

dard ray theory with diffracted waves. 

Interface Complications 

The model we have used contains no significant interface 

complications as defined in the previous sections. However, 

we can adjust the model to consider how these complications 

might arise. Consider the shadow boundary shown in Figure 

6, which is due to the reflected P-wave from interface L2. If 

we move the vertical interface BD closer to AC the result 

would look like the situation in Figure 9. The shaded area 

represents the boundary layer, where the diffracted waves are 

of significant amplitude. The model without adjustment had 

no diffracted rays in the boundary layer intersecting BD. One 

can see that for the rays intersecting the vertical interface BD 

the amplitude cannot be continued from the shadow boundary 

ray (the solid ray in Figure 9) as they have, for example, very 

different reflection transmission coefficients if boundary con- 

ditions are to be satisfied on BD. Also the description of 

diffracted waves given by equation (A-3) is no longer valid 

for the primary diffracted rays passing through BD, once they 

have transmitted through the top (Ll) interface. The sec- 

ondary diffracted waves from point B smooth the discontinu- 

ity in the primary diffracted waves that transmit through Ll to 

the left of B; hence the primary diffracted waves that transmit 

to the right of B no longer smooth any discontinuity, and can- 

not be represented by the form given in equation (A-3). 

Fig. 7. (top) Ray diagram of doubly diffracted waves. The geometrical 
ray (solid) is diffracted at point A and tra”els vertically downwards 
(long dash). It then reflects at the bottom inteflace, tra”ets upwards 

to point A creating secondary dittracted rays (short dash). (bottom) 
Seismograms including the geometrical wave (Z), diffracted waves 

(Pa) and (2b) and the above doubly diffracted wa”e. labelled (2~). 
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AN EXAMPLE OF THE COMPUTATION OF EDGE DIFFRACTED WAVES 

Fig. 9. A ray diagram illustrating where boundary complications 
might arise. Interface SD has been moved to the left to intersect the 

boundary layer (shaded) caused by the diffraction of waves at point 
A. The solid ray represents the shadow boundary ray. 

CONCLUSIONS 

Fig. 8. (top) Seismograms of the geometrical arrival (1). the P-wave 

reflection from the top interface (Ll), for the group of rays reflecting to 
the left of point A. tncluded are diffracted waves from A which smooth 
this arrival and decay to the right (the shadow zone for this group). 

(bottom) Seismograms of the geometrical arrival (l), for the rays 

reflecting to the right of point A including the diffracted waves from 
point A which smooth this arrival and decay to the left (into the 

shadow zone for this group). (Diffracted waves from point S have 

been used to make the bottom seismograms fully continuous.) The 
arrows indicate the position of the shadow boundaly being examined. 

We have shown using the Amoco model, one which gen- 

crates significant diffractions. that the zero order ART solu- 

tion for P-SV waves can be greatly improved through the use 

of the theory of edge waves. The diffracted waves smooth the 

many discontinuities present in the geometrical solution, lead- 

ing to a continuous wavefield (which is to be expected based 

on the properties of the wave equation). The final solution 

must be composed of many diffracted waves from the same 

Amplitude of the Corrected Geometrical Wave Near the Shadow Boundary 

Illuminated Zone w Shadow Zone 

Fig. 10. Modulus of the normalized geometrical amplitude with diffracted w.?.ves included. The dashed tine represents the geometrical amplitude with- 
out diffracted waves. The shaded area represents the shadow boundary layer. usually taken as w < 2. 
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point, each smoothing a particular geometrical ray group, the 

latter being defined by the continuity of geometrical ampli- 

tude. Through looking at individual diffracted ray groups we 

saw an instance of edge waves providing an incorrect solu- 

tion, where a shadow boundary ran nearly parallel to an inter- 

face (and boundary conditions were not satisfied). Although 

rare, such situations are bound to arise in most complicated 

models, and should be identified to locate possible errors in 

seismograms. In the case of the Amoco model the error was 

negligible, since the affected edge waves were near the edge 

of the boundary layer where amplitudes are relatively low. 

Also we presented an instance where the original formulation 

of edge diffracted waves given by Klan-Musatov (19X4), no 

longer applies. This occurs for a subset of primary diffracted 

waves when they encounter a new diffraction point (source of 

diffracted waves) during the course of prapagation. 
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APPENDIX - REVIEW OF THEORY 

For complete review of ART see, for example, Hron and 

Kanasewich (1971). Let us represent the zero order ART 

contribution to a given model as u = lJ,&“*e. Here WC are 

working in the frequency domain where the angular 

frequency is wand 7 is the eikonal which satisfies 

vz.vz=~ 
2)? (A-1) 
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where u is the speed of the isotropic, perfectly elastic media. 

U, is the geometrical wave amplitude and obeys the trans- 

port equation 

2vT-vu~,+u,,v’T=u. (A-2) 

Unit vector e denotes the polarization of the wave dis- 

placement; this is parallel to the ray for P-waves and perpen- 

dicular for S-waves. If the media contain interfaces, then the 

above formulation must satisfy the continuity of stress and 

displacement across these. When these interfaces arc not 

smooth or two or more interfaces intersect at a point, then 

discontinuitics arise in the zero order solution. The surface 

defining the discontinuity in U, is the shadow boundary, and 

this divides the illuminated and shadow zones. ART is not 

applicable in the region surrounding the shadow boundary. 

Klem-Musatov (lY84) and later Bakker (1990) have derived 

a formulation for diffracted waves valid in the vicinity of the 

shadow boundary, known as the shadow boundary layer. 

These diffracted waves smooth the discontinuities in zero 

order ART providing a valid twice differentiable solution 

throughout. The formula in the shadow hnundary layer is 

” = U,,e’““& + W( K+G, P”‘k + o( I / \w ), 
(A-3) 

where T,, is the diffracted wave eikonal, and 

W(w) = G&r \ l 1’ ;,-qf .-‘“; , 

The incomplete gamma function is represented by T&z). 

The positive and negative signs are for the shadow and illu- 

minatcd zones respectively. The variable w is a measure of 

distance from the shadow boundary (w = 0); since it is a 

function of the two eikonals, we must continue the gcometri- 

cal wave cikonal ? by some method into the shadow zone, as 

it does not exist there according to the standard ray theory 

approach. It is worth remarking that the set of all points in 

spew that satisfy T = TV defines the shadow boundary. The 

factor U, does not exist in the shadow zone2 being abruptly 

terminated at the shadow boundary, w = 0. ~,,represents the 

amplitude continued into the shadow zone, and is continuous 

across w = 0. Zero order ART has an accuracy of 0( l/w), 

howcvcf one can set from equation (A-3) that the error is of 

O(1 / ,\.W). We note in passing that this is the order of mag- 

nitude of the diffraction terms resulting from the geometrical 

theory of diffraction, which are not included in this equation. A 

graph of equation (A-3) is the solid curve in Figure 10, which 

shows the modulus of the amplitude of u using w as the 

rJF” 5 mce”hrr 11’,7 



independent variable to get a frequency independent perspec- 

tive. This can be contrasted with the dashed curve, which reprc- 

sents the amplitude of the geometrical wave, terminating at the 

shadow boundary. One can see that the diffracted vfave contri- 

bution decays with distance from the shadow boundary, and is 

essentially negligible outside the boundary layer (shaded). The 

oscillations in the illuminated region are due to the interference 

behveen the geometrical and the diffracted waves. 

AN EXAMPLE OF THE COMP”T*TtON OF EDGE DIFFRArnD WAVES 

[ 1 !!I!!& =” 
da ap 

expansion using equation (A-3), it becomes clear that this is 

equivalent to 

where a = in&L Using a plane wave continuation gives 

Polarization 

The direction of displacement (polarization) of the 

diffracted wave is parallel to that of the body wave it 

smooths. However, as Klem Mustatov (1994) notes, we can 

actually take the polarization parallel (or perpendicular, if we 

are dealing with S-waves) to the diffracted ray, as the differ- 

ence is very small in the shadow boundary layer. We shall 

outline why this is true. Inside the boundary layer, 

CC= 
1 / Ziwp’(m - m,,) in the illuminated zone, 

1 / 2iwp’m, in the shadow zone. 
(A-IO) 

7 = r* + 1/2(m - m,)p2 (A-5) 

Using equation (A-10) combined with the integral defini- 

tion of the incomplete gamma function in equation (A-4), we 

quickly find that equation (A-9) ‘. I\ not satisfied for the plane 

continuation of the geometrical eikonal into the shadow 

zone. Although the solution itself is still continuous at the 

shadow boundary and the jump in the derivative may be 

quite small, the consequence of using a plane continuation of 

the eikonal turns out to be numerically significant. One can 

calculate the wave amplitude and compare it to the solution 

using a properly continued eikonal. The mismatch increases 

with distance from the shadow boundary, and exceeds 100% 

within the shadow boundary layer. Therefore the plane con- 

tinuation of the eikonal is not suitable. 

where p is the distance normal to the shadow boundary, m 

and md are the second partial derivatives in thedirection nor- 

mal to the shadow boundary, and p = O(l/ ~‘0) defines the 

boundary layer. We can write the gradient of T and ‘I~ in ray 

coordinates, and from equation (A-S) we find that 

IVZ-v+O(l/ 6) (A-6) 

and hence it follows that 

le-e,~=o(l/v~q (A-7) 

This shows that th,@fference is negligible, since we have 

an error of O(l/ d\iw) in the solution anyways. In our 

numerical example we take the polarization parallel and per- 

pendicular to the diffracted rays for P-waves and S-waves, 

respectively. 

Continuation of the Geometrical Eikonal 

We noted before that z doesn’t exist in the shadow zone 

and must be continued there so we can make use of equa- 

tion (A-3). One might at first bc attracted by the simplicity 

of a plane wave continuation; however, this leads to signifi- 

cant errors. Technically this is incorrect since it is required 

that the solution be twice differentiable cvcrywhere, and we 

can show that a plane continuation of the geometrical 

eikonal leads to a discontinuity in the first derivative at the 

shadow boundary. Specifically, for a proper solution we 

require al L--l JP 
=O 

where the large brackets denote the jump in the quantity 

across the shadow boundary, located at p = 0. After wme 

(A-9) 

The simplest way to continue the eikonal is using equation 

(A-5); the wavefront c”rvat”re needs to be calculated at each 

point for the geometrical spreading, so this poses no addi- 

tional burden. This was the method used in the Numerical 

Example section. 

Continuation of the Geometrical Amplitude 

Unlike the geometrical eikonal, a plane wave continuation 

of this parameter is valid. This is due to the fact that changes 

in U, within the shadow boundary layer are of O(l/ &). 

Bakker (1990) derived equation (A-3) using the paraxial 

approximation, where U, is the amplitude along the central 

ray, equivalent to a plane continuation of q, in the shadow 

boundary layer. What is worth noting is that q, contains a 

plant wave rcflectionitransmissi,~” cocfficicnt for wwcs hav- 

ing cncountcred an interface during the course of their propa- 

gation. This then means that within the boundary layer differ- 

ences in geometrical amplitude perpendicular to the shadow 

boundary are of O(1i dz) , providing the reflectionltrans- 

mission coefficient is not too rapidly varying (that is, we’re 

not near critical or grazing angles). It can be shown that equa- 

tion (A-3) satisfies the boundary conditions at a smooth inter- 

face to 0(1 I V/W), when a plane wave continuation of the 

amplitude is used. If the interface is not smooth, then the edge 

wave formulation give” in equation (A-3) is no longer valid 

for all the diffracted waves leaving the interface. A particular 

case of this was shown in the Numerical Example section. 
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