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ABSTRACT

We present the application of the theory of edge diffracted waves
to the Amoco model, for the P-SV case. We show how 1o calcutate
some of the terms in the edge wave formulation, including wave
polarization, and the continuation of both the geometrical eikonal
and geometrical amplitude inte the shadow zone. Seismograms from
zero order Asymptotic Ray Theory were computed both with and
without edge waves, to show how necessary the latler are 1o com-
plete the solution. We focus on the step by step construction of a
smooth solution for two of the arrivals using a combination of edge
waves. This provides insight into the conditions present in the zero
order selution which indicate the presence of diffracted waves. It
also demonstrates a limitation of the theory of cdge waves ina com-
plex model; specifically, when shadow boundaries approach inler-
faces tangentially, boundary conditions are not satisfied by the edge
waves. Finally, we give an example of a situation invelving interface
complications, where a subset of primary diffracted waves cannot be
described using the edge wave formulation.

INTRODUCTION

The lack of a useful description for diffracted waves in
Asymptotic Ray Theory (ART) has been a drawback of the
method for many years. Keller (1962) originally proposed the
geometrical theory of diflraction which correcled some of the
shortcoming. However, these diffracted waves depend on a
diffraction coctficient (essentially a directivity pattern) which
is singular at the shadow boundary, the surface dividing the
illuminated and the shadow zones, They also do not rectify the
discontinuity in the geometrical wave (the zero order ART
solution) located at the shadow boundary. Boundary layer
techniques (sce for example Zauderer, 1990) can be applied in
the narrow region surrounding the shadow boundary. Klem-
Musalov (1984) and Bakker (1990) have successfully derived
the shadow boundary layer solution for seismic diffracted
waves (edge waves) in a convenient, general form to be used
in conjunction with ART. Klaeschen et al. (1994) have devel-
oped a scheme to incorporate these diffracted waves into exist-
ing automatic ray tracing programs. The application of the the-
ory of edge waves to a particular model can be complex, so we
present an example here to examine seme of the details. In this
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way we can appreciate the usctulness of edge waves in models
that generate significant diffractions, and also look at some of
the limitations of the theory, keeping in mind more general
geologic situations. A summary of the theory of diffracted
cdge waves, including elaboration of some technical points, is
given in Appendix A. In places it will be necessary to look at
the formulation for diffracted waves, and here we shall refer to
equations of Appendix A.

NUMERICAL EXAMPLE

The example we present employs the Amoco mode! used
carlier by Hron and Chan (1994}, who studied SH diffracted
waves. It is a simplificd version of a tar sands deposit in
northern Alberta, which was used by Amoco rescarchers to
determine the experimental and theoretical role of diffracted
waves in ficld records (Hron and Covey, 1988). Here we
investigate the P-SV case rather than the SH casce. The model
itsetf (Figure 1) is two dimensional and is composed of a box
shaped low velocity zone embedded in a constant velocity
layer belween two half spaces. The vertical component
receivers and the impulsive source are buried to avoid free
surface effects. The ratio of P-wave to S-wave speeds is 13 .
The source wavelet is described by:

f(t) = A sin(rrye= 30 (1)

where A is constant. Multiples and head waves were not cal-
culated in the seismograms. Figure 2 contains the zero order
ART results for this model. There are 12 geometrical body
waves caleulated here (each with a different type of raypath),
and the dominant six are labelled. Figure 3 conlains the ray
diagrams corresponding to these arrivals. Many discontinu-
itics arc present tn Figure 2, and it is clear that standard ART
provides a very unsatisfactory solution. The wavefield with
diffractions included (Figure 4) has all discontinuitics
smoothed using 30 unique diffracted wave contributions
(cach one is defined by the geometrical body wave disconti-
nuity it smooths). The advantage of the Amoco model is that
it presents several different cases of diffraction and we can
use these to study the application of diffracted waves. We
shall look at two arrivals in a defailed manner.
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Fig. 1. The so called Amoco model used for computation of synthetic
seismograms. The densities are equal to unity everywhere. The
speeds indicated are for P-waves. The line RR' represents 60 equally
spaced vertical displacement geophones.

The first is a P-wave reflection from interface 1.2, labelled
(2) in Figure 2. The geometrical rays (Figure 3) are com-
pletely truncated by the vertical interfaces AC and BD. The
corner which terminates the reflections (A or B) gives rise to
diffracted waves which smooth the transition from the pres-
ence to the absence of a reflection. The geometrical eikonal
and amplitude are discontinuous across the shadow bound-
ary, which divides the illuminated and shadow zones. The
shadow boundary is represented by the last ray in the geo-
metrical set of rays which approach the diffracting corner
from a particular direction. In Figure 5 (bottom) we see the
effect of adding the diffracted waves (labelled 2a) generated
when the shadow boundary ray is the last geometrical ray
whose path lies to the left of the vertical interface. Figure 5
(top) is a ray diagram illustrating this. The geometrical
reflection is still incomplete, and more diffracted waves are
needed. The last geometrical ray lying to the right of the ver-
tical boundary (top of Figure 6) is a shadow boundary ray,
and when we include the diffractions caused by it (labelled
2b) the zero order approximation reflection becomes nearly
complete (bottom of Figure 6). There still exists a small dis-
continuity in the wavefield, located around 23 seconds at an
offset of 4.7 km. Tt is here that the diffracted waves (2b) are
themselves truncated by the vertical interface AC. We can
introduce secondary diffracted waves at point A correspond-
ing to the rays in Figure 7 (top) to smooth this. The shadow
boundary ray in this case is a primary diffracted ray that
travels vertically down from the point of diffraction (A),
reflects at the interface L2 and travels upwards striking point
A again causing secondary diffracted waves. The result is
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Fig. 2. The zero order ART response to the Amoco model. No multi-
ples or diffractions are included. The six largest contributions are
labelled here and described in the text. Their raypaths (using corre-
sponding labels) can be found in Figure 3.

VY

Fig. 3. Ray diagrams containing sample rays for the six dominant
arrivals of zero order ART for the time frame shown in Figure 2.
Diagrams are not to scale. All arrivals are P-waves except (6), where
the dashed ray segment indicates conversion to an S-wave. The
nurnbers shown correspond to the labels in Figure 2.
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Fig. 4. The zero order ART solution to the Amaco model with
diffracted waves included. Careful application has removed all dis-
continuities from the zero order ART solution.

shown in Figure 7 (bottom) and labelled {2c). Although these
particular secondary diffracted waves seem to complete the
wavefield adequately, we expect some additional error has
been introduced. This is because the shadow boundary ray
travels along the interface AC, and boundary conditions are
not satisfied here without the presence of another wave trav-
elling along the left side of AC. In our numerical example
this is a relatively small defect, since the amplitude along the
boundary ray in Figure 7 is low (it is ncar the edge of the
shadow boundary layer). However, this represents one of the
limits from the theory of edge waves; specifically, when an
interface runs nearly parallel to a shadow boundary ray,
boundary conditions are not satisfied and equation (A-3) is
not correct to {1/ \,«""a)). (Equation {A-3) gives the formula
for geometric and diffracted waves in the boundary layer).
The second case we shall consider is the P-wave reflection
from the top interface L1 (labelled (1) in Figure 2). The
shadow boundaries are defined by the rays reflecting from
interface L1 at the points A and B. Unlike reflection (2),
across the shadow boundaries the cikonal for reflection (1) is
continuous and the geometrical wave doesn’t vanish (it
changes amplitude according to its reflection coefticient).
The solution offered by equation {A-3) decays to zero in the
shadow zone (see Figure 10), where no geometrical wave
exists. In Figure 2 we see that a geometrical wave is present
on both sides of the shadow boundary, the latter being visible
in the seismograms where there is a reversal of polarity in
the reflection. Hence to use equation (A-3) we need to break
up the reflection into reflected ray groups lying to the left and
right of each corner. Each of the two groups is defined by the
continuity of its reflection coefficient. Kinematically each
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Fig. 5. (top) Ray diagram (not to scale} showing the diffracted rays
{dashed} from point B that smooth arrival (2), the P-wave reflection
from the bottem interface {L2). The boundary ray is shown as the
solid line. Note that diffractions of the same type occur at corner A.
(bottom) Seismograms of the geometrical arrival (2) with diffracted
waves from corers A and B, labelled (2a).

group is identical at the shadow boundary, leading to a con-
tinuous eikonal. Focussing on corner A {which produces the
leftmost discontinuity in reflection (1) in Figure 2), we can
use equation (A-3) by first making [_Hjo the geometrical ampli-
tude associated with the rays reflecting from interface L1 to
the left of point A. The diffracted amplitude decays in the
shadow zone to the right of the shadow boundary ray (Figure
8, top). Similarly, for the other diffracted wave we make (}”
the geometrical amplitude associated with the rays reflecting
to the right of point A (see Figure 8, bottom). We can now
appeal to the principal of superposition and combine the two
as shown in Figure 4, where there is a smooth transition from
one reflection coefficient to another across the shadow
boundary. In our model the change in polarity emphasizes
this transition.
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Fig. 6. (top) A ray diagram for the diffracted waves (dashed) originat-
ing at point A that smooth arrival (2). The boundary ray is shown as
the solid line. Similar diffractions originate at corner B. {bottom)
Seismograms of the geometrical arrival including the diffracted wave
(2a) and the above type of diffracted wave, labelled (2b).

The previous two examples demonstrate that the presence
of diffracted waves can be identified by sharp changes in
geometrical wave amplitude or travel time. This fact was
recognized by Klaeschen et al. (1994), and used in their
automated 2-D ray tracing scheme which augmented stan-
dard ray theory with diffracted waves.

Interface Complications

The model we have used contains no significant interface
complications as defined in the previous sections. However,
we can adjust the model to consider how these complications
might arise. Consider the shadow boundary shown in Figure
6, which is due to the reflected P-wave from interface L2, If
we move the vertical interface BD closer to AC the result
would look like the situation in Figure 9. The shaded area
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represents the boundary layer, where the diffracted waves are
of significant amplitude. The model without adjustment had
no diffracted rays in the boundary layer intersecting BD. One
can see that for the rays intersecting the vertical interface BD
the amplitude cannot be continued from the shadow boundary
ray (the solid ray in Figure 9) as they have, for example, very
different reflection transmission coefficients if boundary con-
ditions are to be satisfied on BD. Also the description of
diffracted waves given by equation (A-3) is no longer valid
for the primary diffracted rays passing through BD, once they
have transmitted through the top (L1) interface. The sec-
ondary diffracted waves from point B smooth the discontinu-
ity in the primary diffracted waves that transmit through L1 to
the left of B; hence the primary diffracted waves that transmit
to the right of B no longer smooth any discontinuity, and can-
not be represented by the form given in equation (A-3).
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Fig. 7. (top) Ray diagram of doubly diffracted waves. The geometrical
ray (solid) is diffracted at point A and travels vertically downwards
(tong dash). It then reflects at the bottom interface, travels upwards
to point A creating secondary diffracted rays (short dash). (botiom)
Seismograms including the geometrical wave (2), diffracted waves
(2a) and (2b) and the above doubly diffracted wave, labelled (2c).
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Fig. 8. (top) Seismograms of the geometrical arrival (1), the P-wave
reflection from the top interface (L1), for the group of rays reflecting to
the left of point A. Included are diffracted waves from A which smooth
this arrival and decay to the right (the shadow zone for this group).
(bottom) Seismograms of the geometrical arrival (1), for the rays
reflecting to the right of point A including the diffracted waves from
point A which smooth this arrival and decay 10 the left (into the
shadow zone for this group). (Difiracted waves from point B have
been used to make the bottom seismograms fully continuous.) The
arrows indicate the position of the shadow boundary being examined.

Fig. 9. A ray diagram illustrating where boundary complications
might arise. Interface BD has been moved to the left to intersect the
boundary layer (shaded) caused by the diffraction of waves at point
A. The solid ray represents the shadow boundary ray.

CONCLUSIONS

We have shown using the Amoco model, one which gen-
erates significant diffractions, that the zero order ART solu-
tion for P-SV waves can be greatly improved through the use
of the theory of edge waves, The diffracted waves smooth the
many discontinuities present in the geometrical solution, lead-
ing to a continuous wavefield (which is to be expected based
on the properties of the wave equation). The final solution
must be composed of many diffracted waves from the same

1.8

Amplitude of the Corrected Geometrical Wave Near the Shadow Boundary

normnalized amplitude

Huminated Zone

w Shadow Zone

Fig. 10. Modulus of the normalized geometrical amplitude with diffracted waves included. The dashed line represents the geometrical amplitude with-
out diffracted waves. The shaded area represents the shadow boundary layer, usually taken as w < 2.
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point, each smoothing a particular geometrical ray group, the
latter being defined by the continuity of geometrical ampli-
tude. Through looking at individual diffracted ray groups we
saw an instance of cdge waves providing an incorrect solu-
tion, where a shadow boundary ran nearly parallel to an inter-
tace (and boundary conditions were not satisfied). Although
rare, such situations are bound to arise in most complicated
models, and should be identified to locate possible errors in
seismograms. In the case of the Amoco model the error was
negligible, since the affected cdge waves were near the edge
of the boundary tayer where amplitudes are relatively low,
Also we presented an instance where the original formulation
of edge diffracted waves given by Klem-Musatov (1984), no
longer applies. This occurs for a subset of primary diffracted
waves when they encounter a new diffraction point (source of
diffracted waves) during the course of prapagation.
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APPENDIX ~ REVIEW OF THEORY

For complete review of ART see, for example, Hron and
Kanasewich (1971). Let us represent the zero order ART
contribution to a given model as u = U ¢/®e. Here we are
working in the frequency domain where the angular
frequency is w and T is the eikonal which satisfies

Vi Voo - (A-1)
=
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wherc v is the speed of the isotropic, perfectly elastic media.
U, is the geometrical wave amplitude and obeys the trans-
port equation

2V VU + UV T=0. (A-2)

Unit vector e denotes the polarization of the wave dis-
placement; this is parallel to the ray for P-waves und perpen-
dicular for S-waves. If the media contain interfaces, then the
above formulation must satisfy the continuity of stress and
displacement across these, When these interfaces arc not
smooth or two or more interfaces intersect at a point, then
discontinuitics arise in the zero order solution. The surface
defining the discontinuity in U, is the shadow boundary, and
this divides the illuminated and shadow zones. ART is not
applicable in the region surrounding the shadow boundary.
Klem-Musatov (1984} and later Bakker {1990) have derived
a formulation for diffracted waves valid in the vicinity of the
shadow boundary, known as the shadow boundary layer.
These diffracted waves smooth the discontinuities in zcro
order ART providing a valid twice differentiable solution
throughout. The formula in the shadow boundary layer is

u=Uemer WU, e e 0(1/V0) (a3

where 7, is the diffracted wave eikonal, and

. 2 o
W(w)=+ l,_F(l LA P
2\."‘” 2 2 ’
where
20z, —
w= va(rd T). (A-4)
Vo

The incomplete gamma function is represcnted by I'(3.2).
The positive and negative signs are for the shadow and illu-
minated zones respectively. The variable w is a measure of
distance from the shadow boundary (w = 0); since it is a
function of the two eikonals, we must continue the geometri-
cal wave cikonal T by some method into the shadow zone, as
it does not exist there according to the standard ray theory
approach. It is worth remarking that the set of all points in
spacc that satisfy T = 7, defines the shadow boundary. The
factor U, does not exist in the shadow zone, being abruptly
terminated at the shadow boundary, w = 0. [7_represents the
amplitude continued into the shadow zone, and is continuous
across w = 0. Zero order ART has an accuracy of C(l/w)
however one can see from equation (A-3) that the error is of
O(1/~@). We note in passing that this is the order of mag-
nitude of the diffraction terms resulting from the geometrical
theory of diffraction, which are not included in this equation. A
graph of equation (A-3} is the solid curve in Figure 10, which
shows the modulus of the amplitude of u using w as the
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independent variable to get a frequency independent perspec-
tive. This can be contrasted with the dashed curve, which repre-
sents the amplitude of the geometrical wave, terminating at the
shadow boundary. One can see that the diffracted wave contri-
bution decays with distance from the shadow boundary, and is
essentially negligible outside the boundary layer (shaded). The
oscillations in the illuminated region are due to the interference
between the geometrical and the diffracted waves.

Polarization

The direction of displacement (polarization} of the
diffracted wave is parallel to that of the body wave it
smooths. However, as Klem Mustatov (1994) notes, we can
actually take the polarization parallel {or perpendicular, if we
are dealing with S-waves) to the difiracted ray, as the differ-
ence is very small in the shadow boundary layer. We shall
outline why this is true. Inside the boundary layer,

T= T, +1/20m—m,)p’ (A-S)

where p is the distance normal to the shadow boundary, m
and m, are the second partial derivatives in the direction nor-
mal to the shadow boundary, and p = O(1/ V®) defines the
boundary layer. We can write the gradient of T and 1, in ray
coordinates, and from equation (A-5) we find that

Ve-Vz,|=0(1/ Vo) (A-6)
and hence it follows that
le—e,|= 0(1 / v“'B) . (A-7)

This shows that the difference is negligible, since we have
an error of O(1/+®) in the solution anyways. In our
numerical example we take the polarization parallel and per-
pendicular to the diffracted rays for P-waves and S-waves,
respectively.

Continuation of the Geometrical Eikonal

We noted before that T doesn’t exist in the shadow zone
and must be continued there so we can make use of equa-
tion (A-3). One might at first be attracted by the simplicity
of a plane wave coniinuation; however, this leads to signifi-
cant errors. Technically this is incorrect since it is required
that the solution be twice differentiable everywhere, and we
can show that a plane continuation of the geometrical
eikonal leads to a discontinuity in the first derivative at the
shadow boundary. Specifically, for a proper solution we
require

du
3

where the large brackets denote the jump in the quantity
across the shadow boundary, located at p = 0. After some
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expansion using equation (A-3), it becomes clear that this is
equivalent to

[awoa)_q
do dp |

where o = inw?/2. Using a plane wave continuation gives

(A-9)

1/ 2iwp’ (m —m,) in the illuminated zone,
= (A-10)

~1/2iwp*m, in the shadow zone,

Using equation {A-10) combined with the integral defini-
tion of the incomplete gamma function in cquation (A-4), we
quickly find that equation {A-9) is not satisfied for the plane
continuation of the geomeirical eikonal into the shadow
zone. Although the solution itself is still continuous at the
shadow boundary and the jump in the derivative may be
quite small, the consequence of using a plane continuation of
the eikonal turns out to be numerically significant. One can
calculate the wave amplitude and compare it to the solution
using a properly continued eikonal. The mismatch increases
with distance from the shadow boundary, and exceeds 100%
within the shadow boundary layer. Therefore the plane con-
tinuation of the eikonal is not suitable.

The simplest way to continue the eikonal is using equation
(A-5); the wavefront curvature needs to be calculated at each
point for the geometrical spreading, so this poses no addi-
tional burden. This was the method used in the Numerical
Example section.

Continuation of the Geometrical Amplitude

Unlike the geometrical eikonal, a plane wave continuation
of this parameter is valid. This is due to the fact that changes
in U, within the shadow boundary layer are of O(1/ ).
Bakker (1990) derived equation (A-3) using the paraxial
approximation, where U is the amplitude along the central
ray, equivalent to a plane continuation of U, in the shadow
boundary layer. What is worth noting is that &/, contains a
planc wave reflection/transmission cocfficient for waves hav-
ing encountered an interface during the course of their propa-
gation. This then means that within the boundary layer differ-
ences in geometrical amplitude perpendicular to the shadow
boundary are of O(1/ Vo), providing the reflection/trans-
mission coefficient is not too rapidly varying (that is, we're
not near critical or grazing angles). It can be shown that equa-
tion (A-3) satisfies the boundary conditions at a smooth inter-
face to O(1/ \-"‘"a)), when a plane wave continuation of the
amplitude is used. If the interface is not smooth, then the edge
wave formulation given in equation {A-3) is no longer valid
for all the diffracted waves leaving the interface. A particular
case of this was shown in the Numerical Example section.
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