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CONSTRAINED MINIMUM-ENTROPHY DECONVOLUTION 

F.K. BOADU’ AND R.J. BROWN* 

ARSTRACT 

Slalisticat deconvotuti”” techniques arc hascd upon various 
assumptions that are incorporated in the operator. When the assump- 
tions arc valid, good results may he anticipated. Poor *mutts, cm the 
uthcr hmd. may hc sympmnatic of invalid ass”mptions. The cun- 
vcntionat Wiener spiking deconvotution technique performs very 
rohurtty, regardless of the distribution of amplitudes in the rctkciiv- 
ily sc*ics, provided the Wavelet is minimum-phase or accurately 
known. Minimum-entropy drconvotution (MED), an the other hand. 
utitizes the assumption that reflectivity is csscntiatly rirndom and 
““n-Gaussian. These criteria, which are required fur llptimal perfor- 
mancc uf cithcr dcconvolution technique, are not met in practice for 
most real seismic ctati,. men, ,hc wawte, is no, sufficiently mini- 
mum-phase fur spiking dccnnvotution and the reflectivity series is 
I”” nearly Gaussian *or MED. 

We propose a merger of these twu &convolution techniques. a 
hybrid optimiration pruccdurc termed conrrruined mhG71um-enlrop~ 
decon~~olurion (CMED), that cnploits Ihc useful properties of borh 
spiking deconvotution (SD) and MED. CMED can, in many cas~b, 
*cstore proper phase characteristics, suppressing side tobcs, white 
providing aufficirnt pulse compression. In other words, CMED can 
poccnMly ov~r~nme the weaknesses of either method used in isda- 
tinn. By a suitable choice of a weighting factor, CMED cm also 
handle situations where the charactrristics of the input data tie close 
to the optimal perfmnancc criteria of tither of the nw end-member 
dsconvolution methuds, SD ur ME”. 

The fundamental objective of seismic deconvolution is to 
reconstruct the reflectivity series with some resolution by 

undoing the effects of the propagating source wavelet. 

Several deconvolution methods have been proposed in the 
geophysical literature, each with its own optimization criteria 
and with characteristic assumptions, to compute the filter 

coefficients. 
Conventional deconvolution methods such as spiking 

deconvolution (SD) or predictive deconvolution (Robinson 

and Treitel, 1967; 1980) seek to whiten the spectra by impos- 
ing restrictions on the phase of the source wavelet to com- 

pute the filter coefficients. Minimum-entropy deconvolution 
(MED) (Wiggins, 1978; Donoho, 1981) attempts to find a 
linear operator that maximizes the spikiness of the reflectiv- 
ity, thereby reducing the disorder in the series and hence 
minimizing entropy. MED does not assume a minimum- 
phase wavelct and its operator is designed from a multitrace 
input, selectively suppressing frequency bands over which 
the ratio of coherent signal to random noise is low. 

Real data often violate the assumptions underlying both 
MED and SD. However, by merging the two techniques 
through a hybrid optimization scheme, termed: constrained 

minimum-entropy deconvolution (CMED), one may poten- 
tially combine the robustness of spiking deconvolution with 
the insensitivity of MED to the input phase characteristics. 
The filter coefficients are derived from an optimal combina- 
tion of conventional spiking deconvolution and the varimax 
criterion of MED. The optimally derived CMED operator 
exploits the advantages of the two methods used in isolation 
for improved performance. 

The intent of this note is simply to propose this nonlinear 
hybrid deconvolution technique as one that could prove to be 
of practical benefit in certain cases. Our approach at this 
stage is heuristic or empirical rather than thcorctical. Further 
experimental and theoretical study, as well as algorithmic 
development, are required. 

DECONVOLUT~ON TECHNIQUES 

Spiking deconvolution 

Conventional deconvolution techniques assume a model in 
which the reflectivity is a random and uncorrelated series of 
events with a white spectrum. The standard approach in 
computing the prediction-error filters involves the use of the 
Wiener-Levinson algorithm (Robinson and Treitel, 1967; 
Peacock and Treitel, 1969) which requires the explicit com- 
putation of the input-trace autocorrelation. The spiking oper- 
ator does a good job in the recovery of the earth impulse 
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response if that response is nearly white, random and station- 
ary, and if the seismic wavelet is minimum-phase or accu- 
rately known (Ziolkowski, 1984). Jurkevics and Wiggins 
(19X4) observed that spiking deconvolution is robust under a 
wide range of reflectivity and signal-distortion conditions 
and still remains the universal choice in practice. Its success- 
ful application, like that of any other statistical deconvolu- 
tion method, depends on the assumptions made in the devel- 
opment of the deconvolution operator. 

Minimum-entropy deconvolution 

Minimum-entropy deconvolution (Wiggins, 197X; Ooe 
and Ulrych, 1979; Donoho, IYXI; DeVries and Berkhout 
19X4; Sacchi et al., 1994) designs the linear operator which, 
when applied to the seismic trace, leaves behind the smallest 
number of large spikes consistent with the data. Such an 
operator is designed by maximizing some data-simplicity 
measure with respect to the filter coefficients. The measure 
chosen by Wiggins (197X) is the varimax (or simplicity) 
norm defined for a multichannel time series X as: 

(1) 

where: 

r 1 x11 X12..%* 

where x0 is the ith sample of the jth trace with S samples and 
T traces, and xi represents the single jth trace. 

The varimax norm has the property that, for each trace, it 
is maximized t” V = 1 (V = T, for T traces) when the trace 
consists of a single spike of unit amplitude. In general, the 
more nonze~” spikes of consistent amplitude there are, the 
smaller the varimax becomes. The MED normal equations 
(Wiggins, 1978), as they stand, are highly nonlinear and, as 
such, cannot be solved directly. However, they may be 
solved recursively in a fairly straightforward fashion, which 
“may not lead to a unique maximum value for V but leads 
to a useful local maximum” (Wiggins, 1978). 

Wiggins (19X.5) noted that MED does not work very well 
most of the time and discussed a number of reasons for this. 
He also proposed an alternative deconvolution procedure, 
“entropy-guided deconvolution”, designed t” provide suit- 
able deconvolution for real random seismic data and for 
wavelets of any phase. A feature of this scheme is that it 
approaches Wiener behavior as the probability distribution of 
the reflectivity series becomes more Gaussian. Other prob- 
lems with MED have been dealt with, for example, by 
Donoho (19X1), Jurkevics and Wiggins (19X4) and Deeming 
(lYX4). chief among them, perhaps, the question of model 

validity: if the reflectivity series within the design window 
does not have the minimum-entropy property, i.e., that of a 
sparse-spike sequence, then applying an MED.designed 
operator tending to produce such a sparse output would be 
inappropriate. 

Other techniques 

Considerable recent theoretical work has been published 
on higher-order statistics and blind deconvolution (Mendel, 
1991; Lacoumc, lYY2) and the effects on performance of 
such quantities as kurtosis, bandwidth, and duration (White, 
1988; Boumahdi and Glangeaud, 1994), which surely will 
lead to improvements over such methods as SD and MED. 
Indeed, the hybrid method presented hex, CMED, is not 
intended to eclipse such new and wphisticated methods. The 
objectives of this paper are quite limited and specific: to prc- 
sent CMED as one possible deconvolution method that 
might be appropriate in many cases and which may he fairly 
readily implemented using software components that are 
widely available. 

C~NSTRALWD MINIMUM-ENTKOPHY DECONVOLUTION 

Constrained minimum-entropy deconvolution (CMED) is 
developed for the purpose of combining the useful properties 
of Wiggins MED and Wiener spiking deconvolution. In real 
situations we expect the large degree “f nonlinearity of the 
CMED varimax, coupled with the gcncral instability of 
deconvolution and sensitivity t” noise, to yield a “bumpy” 
objective function, i.e., one with multiple l”cal minima. As 
mentioned earlier, the constrained varimax functional is com- 
plicated and its direct solution is a difficult problem. 
However, the problem can be solved by using an optimiration 
scheme like that of Rothman (19X5) that avoids the local lin- 
earization pitfalls of Wiggins’s (197X) algorithm and searches 
for solutions close to the global minimum of the CMED 
objective function. The resulting algorithm conveniently 
adjusts to any desired combination of MED and Wiener 
deconvolution by a suitable choice of weighting factor. 

Constrained MED varimax functional 

Following from equation (I) and defining the MED filter 
output as: 

Y,j = ~f,xk-,+l.,~ 
/=I 

the MED varimax norm may be written as: 

(3) 

where xij = input signal, K = number of time samples per 
trace, T = number of traces, and fi are the L filter coefficients 
(filter length). 
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Any approach used to maximize V(Y) will lead to the 
MED solution. Wiggins (1978) chose the iterative procedure 
using the Levinson algorithm. The prediction-error operator 
(spiking operator) can be ob&ined as a solution to the equa- 
tion of the form: 

where $=(z) is the autocorrelation of the input at lag z, f, are 
the filter coefficients, and Q,(z) is the crosscorrelation 
between input and desired output. For multitrace cases, an 
average autocorrelation is computed for all the traces. 
Minimization schemes for the solution of equation (5) using 
the conjugate-gradient and gradient algorithms have been 
utilized by Wang and Treitel (1973). The approach adopted 
here is to minimize the sum of squares of the bracketed terms 
of equation (5). 

The constrained-varimax norm C(Y) is then obtained by 
convex combination of equations (4) and (5), thus: 

To ensure convexity: $I, (h) + e2 (h) = 1; $I, (h) t 0, and $2 
(h) t 0; @, (1) decreasing monotonically on [O,l] and 0 5 h < 
1, h being a weighting factor expressing relative emphasis on 
either term of equation (6). Heuristically, $I, (h) = 1 

h4 and $I~ (h) =X4 were chosen simply to be in accord with 
the exponent 4 in the varimax norm. By adopting such a con- 
vex combination, the solution swings from one extreme, say 
that of spiking deconvolution for X4, or h, equal to unity, to 
that of MED for h equal to zero. The CMED solution lies, in 
general, somewhere between these limits of h. An average 
autocorrelation of all the traces was utilized in the computa- 
tion of the CMED operator. The only unknown parameters in 
equation (6) are the filter coefficients on which the output is 
dependent. The solution of the CMED equation lends itself 
particularly to optimization routines which require function 
evaluation only. 

Optimization approach 

Owing to the complexity of the CMED objective function 
and inadequate knowledge of the optimal filter coefficients, 
application of direct-search methods (e.g., Box et al., 1969) 
in the maximization is preferable. The optimization routine 
chosen, due to Bremermann (1970), is essentially an uncon- 
strained global optimization routine, guaranteed to converge 
for fourth-order functions (Bremermann and Lam, 1970). At 
an iteration point x(O), the method generates a random direc- 
tion vector r (with Gaussian distribution) and determines the 
restriction of the varimax function C to the line .x(O) + hr. 
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Fig. 1. Input and output after &convolution (model A): (al sparse 
reflectivity series, lb) minimum-phase source wavelet. 

This restriction is a fourth-order polynomial in the parameter 
h, whose coefficients are determined by five-point 
Lagrangian interpolation. The derivative is a third-order 
polynomial which has either one or three real roots. These 
roots are computed by Cardan’s formula (Bremermann, 
1970). 

If there is one root, ho, the procedure is iterated from the 
point with a new random direction, provided C(x(“) + h,,r) S 
C(#). If this inequality does not hold, the method is iterated 
from x@) with a new random direction. When there are three 
roots, h,, h,, h,, then the functional is evaluated at xc”) + h,r, 
A”) + hzr. and x(O) + h3r. The procedure is iterated from the 
point where the value of C is minimum, continuing until a 
predetermined number of iterations have been run or C has 
decreased to a prescribed value. The initial guess need not be 
close to the optimum filter values, though a closer guess 
implies fewer iterations to the optimum. 

The convergence properties of the method have been ana- 
lyzed by Bremermann (1970). And, in a comparative assess- 
ment of five least-squares inversion methods, Hoversten et 
al. (1982) noted that for Bremermann’s method the number 
of function evaluations used in the iterative procedure is 
independent of the number of parameters (filter coefficients) 
describing the system, while the other four routines (ridge 
regression, spiral algorithm, Peckam’s method, simplex 
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Fig. 1. (c) output after applying SD, (d) output atter applying MED. 
(e) output after applying CMED. 
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method) require more function evaluations as the number of 
parameters increases. 

In the design of the CMED algorithm, the approach taken 
is to use the direct-search (global optimization) routine due 
to Bremermann (1970) to investigate the constrained vari- 
max norm over some broad region of interest by a predeter- 
mined number of iterations, usually 10 to 30. At this stage, 
the parameters constitute a good initial guess for local opti- 
mization for faster convergence and efficient investigation. 
The output of the local optimization routine after successful 
convergence is the CMED operator. In most of the success- 
ful runs, 300 to 400 iterations were carried out. 

As can be seen from equation (6). the CMED norm has the 
weighting factor as an input parameter. As will be seen later, 
the phase-resolution characteristics of the propagating 
wavelet are dependent on this parameter. A user-friendly 
algorithm developed for CMED allows for flexible input of 
the weighting factor, choice of the design window, and 
heuristic estimation of filter length. 

Fig. 1. (f) residual wavelet after SD, (g) residual wavelet after MED. 
(h) residual wavelet after CMED. Amplitudes in all figures are arbi- 
trarily normalized to [-I OO%, 1 OO%l. 

EVALUATION OF CMED PERFORMANCE 

The performance criterion for the three deconvolution 
methods was established following the procedure by 
Jurkevics and Wiggins (1984). Synthetic data with known 
reflectivities and wavelets were deconvolved using all three 
techniques. The degree of pulse compression was assessed 
by a residual wavelet, a measure of average waveform 
remaining in the seismogram after deconvolution. This mea- 
sue was utilized by Jurkevics and Wiggins (1984) in their 
critique of seismic deconvolution methods and we deem it 
satisfactory for purposes of this paper. This residual wavelet 
is defined in the frequency domain by division as: 

residual wavelet (w) = processed output (w) 
(7) 

true reflectivity (0) 
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and, in practice, a small constant (white noise) can be added 
to the denominator to avoid instabilities caused by division 
by very small numbers. 

For ideal deconvolution, the time-domain residual would 
be a spike, i.e.: output = reflectivity. And the residual for no 
deconvolution would be the original source wavelet, i.e.: out- 
put = input. In real situations, the residual resides between 
the two extremes. Any phase distortions introduced in the 
propagating wavelet can be discerned by examining the out- 
put residual wavelet. Thus the residual wavelet is a good 
indicator of the degree of pulse compression and phase dis- 
tortion or restoration. 

Synthetic data results 

A comparative study was performed on the three methods, 
SD, MED and CMED. The synthetic data contain different 
source wavelets: minimum-phase, band-limited zero-phase 
and band-limited phase-shifted (90”) wavelets. We used 
sparse and dense reflectivities that were thought to simulate 
well a variety of field conditions. The three methods were 
applied to the input traces and the outputs examined. In most 
cases the residual wavelet was examined as it gave a good 
indication of the performance of the particular deconvolution 
method in question. Several models that included different 
distributions of reflectivity and different source wavelets 
were run (Boadu, 19X7) and WC here present a few examples 
of the most relevant results 

0 50 100 150 200 250 
TRAVELTIME (ms) 

1 

-loo- 
TRAVELTIME (ms) 

Fig. 2. Input and output after deconvolution (model El): (a) dense 
reflectivity series. (b) band-limited zero-,,hase wurce wavelet. 

Example I, model Al. Model Al consists of a spew 
reflectivity series (Fig. la) convolved with a minimum-phase 
source wavelet (Fig. lb). Outputs after deconvolution using 
the three methods are illustrated in Figures Ic, d, and c. Each 
method does a reasonable job of compressing the source 
wavelet and reproducing the original reflectivity. MED gave 
the best result, as the characteristics of the input model were 
consistent with the assumptions made in obtaining the MED 
operator. The residual wavelets extracted after dcconvolution 
are shown in Figures If, g, and h. Suppression of side-lobes 
is a desirable characteristic in situations where phase resolu- 
tion is vital, as in high-resolution seismic and in the explo- 
ration for stratigraphic traps (e.g., Kictsch, 1983, and in this 
case MED and CMED do a better job than SD. 

A symmetric filter (Wiggins, 1978) of length 16 points 
was used as the initial guess in both MED and CMED, with a 
weighting factor of 0.05. The CMED residual wavelet shows 
lower frequencies as well as a polarity reversal. The lower 
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Fig. 2. (c) residual wavelet after SD, (d) residual wavelet after MED. 
(e) residual wwelet after CMED. 
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Fig. 3. input and output after deconvolution (mode, 82): (a) dense 
reflectivity series. (b) 90” phase-shifted source wavelet. 

frequencies may hc attrihutahle to the nature of the ohjectivc 
function used in the CMED algorithm. The combination ot 
the fourth-order varimax functional and the second-order 
autocorrclation tends to reduce both numerical instahilitics 
and the estimation variance, contributing to the rohustncss ot 
CMED. The time delay ohservcd in both MED and CMED is 
likely due to the filter length chosen. This may post a potcn- 
tial problem for the two methods. However the prohlcm is 
partly solved by trial runs to dctcrmine the filter length that 
maximizes and tapers the objective functions. 

The polarity reversal seen is characteristic nf MED.like 
norms: i.e., that the polarity of the output “spikes” cannot he 
predicted as they do not affect the maximiration of the vari- 
max nom (Wiggins, lY78). (Compare, for example, Figs. Sh 
and 7h.) In gcncral, the output will appear reversed if, on 
average. negative lohes arc larger than positive ones. 
Wiggins (IY78) suggests applying a polarity rcversid to out- 
puts aftcr careful comparison of outputs and inputs. 

Example 2, mo&l 131. Model Bl is a dense rellcctivity 
series (Fig. 2a) convolved with a hand-limited zero-phase 
wavelet shown in Figure 21~. The nature of this rctlectivity 
series simulates very well real data situations with rellcctors 
occurring, on average, about cvcry 4.5 ms (Jain, lYX6). The 
wavelet is of a trapezoidal passhand of I? Hz to 55 Hz, with 
taper zones from 8 to 12 Hz and 55 to 65 Hz. This frequency 
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TRAVELTIME (ms) 

0 50 100 150 200 250 
TRAVELTIME (ms) 

1 

-+-+- 

i CMED 

50 100 150 200 250 
TRAVELTIME (ms) 

Fig. 3. (c) residual wavelet after SD, (d) residual wavelet after MED. 
(-2, residual wavelet after CMED. 

band has been reported by Jain (I 986) as representative of 
much data collected in Alherta over the lest several years. 
This test wavelct is somewhat noisy because it was hand- 
pass-filtered in order that its frequency content should match 
that spccificd. 

Figures 2c, d, and e show the residual wavelets after pro- 
cessing with the three methods. The SD residual wavelct is a 
reasonable representation of the source wavelet; however, 
the CMED residual wavclet (weighting factor of 0.35) is sig- 
nificantly better and appears the hest (the most spike-like) of 
the three. Side lobes are fairly well suppressed and there is 
considcrahle pulse compression. The MED residual wavelet, 

the worst of the three, is phasc-distorted and unstable. 
Example 3, model 82. - This model consists of a dense 

reflectivity series convolved with a phase-shifted wavelet 
(Figs. 3a and h). The residual wavelet was examined after 
application of each of the three methods. Figures 3c, d, and e 
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Fig. 4. Residual wavelet after deconvolution of input data (model Bl) 
with 5% white n&e added: (a) SD, (b) MED. (c) CMED. 

are the outputs of the residual wavelets. A filter length of 8 
points was used with a weighting factor of 0.12 for the 
CMED. The CMED provides a better and cleaner residual 
wavelet with reasonable suppression of sidelobes, whereas 
the MED and SD residual wavelets show considerahlc phase 

distortion. 

Effects of noise 

Noise of any form degrades most inversion or deconvolu- 
tion processes as it leaves stratigraphic imprints unclear. 
Berkhout (1977) indicated that even low-level noise is detri- 

mental to reliable wavelet deconvolurion using a one-sided 
operator. Any procedure which attempts to suppress noise or 
reduce amplification of noise is thus desirable. Figure 4 

shows residual wavelets after processing using the three 
deconvolution methods. The input model is Model Bl with 

SD 
-100 

(I 50 100 150 200 250 
TRAVELTIME (ms) 

MED 
-1w 

0 50 100 150 200 250 
TRAVELTIME (ms) 

!I CMEC 
-100 

0 50 100 150 20” 250 
TRAVELTIME (ms) 

Fig. 5. Residual wavelet. using &point filter. after: (a) SD. (b) MED. 
(c) CMED. 

additive noise (5% white noise). This random noise is of uni- 

form distribution with the maximum amplitude as a percent- 
age of the largest signal amplitude. 

WC ohscrvc that the CMED (Fig. 4~) has done the best job 
in terms of reducing noix amplification. The average wave- 
Sorm af’ter SD has the highest noise Icvcl. Waveform distor- 

tion is seen in the MED residual wavelet. 

Effect of filter length on CMEII output 

As previously mentioned the length of the deconvolution 
operator is often a sensitive parameter in MED.like deconvol- 
utiun schcmcs. Figures 5, 6, and 7 show the residual 

wavelets after proccssing of Model BI with S-point, 2%point, 
and Xl-point filters, respectively. In Figure 5, each method 
shows adequate pulse compression and sufficient side-lobe 

suppression, the best 5.point result hcing for CMED. In the 
20.point cast (Fig. 6) the pulses are generally WOTSC, hcing 
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Fig. 6. Residual wavelet, using X-point filter, after: (a) SD, (b) MED. 
(c) CMED. 

broader than for the 5-point case (Fig. 5). In this case, 

CMED and SD are about equally good, MED hcing worst. In 
Figure 7, the continuing degradation of output with filter 
length is clearly seen. One may also observe that SD is not 

nearly as sensitive to filter length as MED or CMED is. 
Better results are obtained from CMED using shorter filter 

lengths. 

Effects of weighting factor on CMED output 

In the design of the CMED operator, a weighting factor in 
the form of a parameter is introduced in the CMED objective 
fimction. A suitable choice of this parameter allows the solu- 

tion to swing from SD to MED. Figure 8 shows the residual 

wavelet outputs (Model Bl) varying the weighing factor, 
values being 0.3, 0.35, and 0.4. The gradual shift in phase 
with the weighting factor can he seen. An optimum value of 
0.35 sets the phase close to zero. The weighting factor is thus 

SD 

TRAVELTIME (ms) 

b 

50 100 1.50 200 250 
TRAVELTIME (mS) 

CMEC 
-vi0 

0 50 100 150 200 250 
TRAVELTIME (“=) 

Fig. 7. Residual wavelet, using 30.point filter, after: (a) SD, (b) MED, 
(c) CMED. 

a critical parameter in phase selection. By examining output 

for various values of the weighting factor, one can find a rea- 
sonable value. The choice of the weighting factor at prcscnt 
is heuristic. However, a more appropriate way is to include 
the weighting factor as a parameter to he estimated by opti- 
mization of the CMED objective functional. 

Amplitude spectra 

Figure Y shows one example of amplitude spectra before 

and after deconvolution of noisy input data (Model Bl COT- 
rupted with 5% noise). The noise dominates in the high-fre- 
quency portion of the spectrum as incoherent signal. SD 

blows up these incoherent signals considerably. MED 
reduces signal amplitude in low-frequency portions of the 
spectrum and hoosts, to a lesser extent, the high-frequency 

incoherent signals. CMED (Fig. Yc) amplifies some of the 
low-frequency signal and, relative to SD and MED suppresses 
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Fig. 8. Effect of varying the weighting factor (CMED) on phase of the 
residual wavelet: (a) 0.3, (b) 0.35. (c) 0.4. 

the high-frequency incoherent signals. Again, this property 
of CMED is advantageous as amplification of such high-fre- 
quency noise may become a problem, particularly al late 
reflection times. Such noise may also cause serious errors in 
phase treatment produced by spiking deconvolution 
(Berkhout, 1977). 

Real data 

A field shot record obtained from Veritas Seismic Ltd. 
(Calgary) was used to test the performance of CMED on real 
data. Figure 1Oa shows the unprocessed data. Figures lob, c, 
and d show the processed data using SD, MED and CMED, 
respectively. The deconvolution parameters for the spiking 
deconvolution were: an operator length of 22 points, a white- 
noise level of OS%, and a design window of length hetwccn 
400 and 650 ms. The MED was processed with an operator 
length of 22 points while the CMED had a filter length of 22 
points and a weighting factor of 0.1. 
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Fig. 9. Amplitude spectra before and after deconvolution (5% noise) 
for: (a) SD. (b) MED. (c) CMED. 

Some improvements of the CMED over the other two 
methods can be discerned from the gathers. The reflectors 
have been clearly isolated with better resolution and signal- 
to-noise ratio. The main reflectors which exhibit some dou- 
blets in the MED and SD sections show as single events on 
the CMED sections. 

Applicability of CMED 

One of the prime aims of most standard deconvolution 
techniques is to produce a common-midpoint (CMP) stacked 
section in which each trace can be considered as the earth’s 
primary reflectivity series convolved with a zero-phase 
wavelet. We thus expect the residual wavelet to be zero- 
phase, though more often it is not. The variety of reasons 
which give rise to this phase distortion have been described 
by Levy and Oldcnburg (1982). Stability of phase becomes 
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Fig. 10. Real data example: (b) processed data (SD) 

A ccmmmn technique to correct for residual phase of 
the wavelet is to phase shift a number of seismograms in 
the vicinity of a well until the best match between the syn- 
thetic seismogram and the phase-shifted data is found. As 
commented hy Levy and Oldenburg (1987), the mathe- 

matical model of constant phase shift may not be appro- 
priate in all instances. The CMED adopts a simple 
approach of phase shifting the residual phase to be L~TO 
by varying the weighting factor. Usually two or three tri- 
als give the required results. For the models run, the 

i’ltc; 42 Dcccmhr. IVU, 





600 

. 

c 

i 

c 

,-= 

< 

P 

1 

’ < 
c 

. 

: 

i 

P 

CONCLUSIONS 

A hybrid technique of seismic dwonvolution termed con- 

strained minimum-entropy deconvolution (CMED) has been 
proposed as a combination of spiking and minimum-entropy 

deconvolution. Outputs from the synthetic data models run 
using the three deconvolution methods, wcrc compared. The 
conclusion drawn is that CMED can do a better job in some 
situations where either MED or SD performs badly. CMED 
works reasonably well on the real data presented in this 
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paper. More real data SC% are needed for testing to establish 
the potential of the CMED. 

CMED can correct phase errors with a suitable choice of a 
weighting factor incorporated in the CMED algorithm. In 
general, shorter filter lengths give better performance. 
CMED seems to suppress side lobes and increases the signal- 
to-noise ratio. In particular, it suppresses frequency hands 
with low signal-to-noise ratio and boosts those hands in 
which coherent signals dominate. The noise-reduction char- 
acteristics of CMED also appear to be positive in the exam- 
ples shown. In cases where either MED or SD fails to reduce 
the noise amplifications, the CMED does a relatively good 
job. 

For future work, further processing should he carried out 
on real data examples. Initially, test panels can be run to 
determine heuristically the best choice of parameters. 
However, the optimization process to determine filter param- 
eters over particular zones of interest could perhaps he auto- 
mated by including these parameters as variables to be deter- 
mined computationally in the objective function. 

Finally, CMED will certainly not universally and perfectly 
solve the age-old problems of seismic deconvolution. 
However, it seems to perform better in some situations 
where the existing or conventional methods fail to provide 
satisfactory results. 
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