CANADIAN JOURNAL OF EXPLORATION GEOPHYSICS
VOL. 33, NOS. 1 & 2 (DECEMBER 1897), P. 32-45

CONSTRAINED MINIMUM-ENTROPHY DECONVOLUTION

F.K. Boabu' anD R.J. BrRowNn?

ABSTRACT

Statistical deconvolution techniques are bascd upon various
assumptions that are incorporated in the operator. When the assump-
tions arc valid, good results may be anticipated. Poor results, on the
other hand, may be sympiomatic of invalid assumptions. The con-
ventional Wiener spiking deconvolution technique performs very
robustly, regardless of the distribution of amplitudes in the reflectiv-
ity scries, provided the wavelet is minimum-phase or accurately
known. Minimuem-eatropy deconvelution (MED), on the other hand,
utilizes the assumption that reflectivity is essentially random and
non-Gaussian. These criteria, which are required for optimal perfor-
mance of either deconvolution technique, are not met in practice for
most real scismic data. Often, the wavelet is not sofficiently mini-
mum-phase for spiking deconvotution and the reflectivity series is
too aearly Gaussian for MED.

We propose a merger of these two deconvolution techniques, a
hybrid optimization procedure termed constrained minimum-entropy
deconvelution (CMED), that cxploits the useful properties of both
spiking deconvolution (8D) and MED. CMED can, in many cases,
restore proper phase characteristics, suppressing side lobes, while
providing sufticient pulse compression. In other words, CMED can
potentially overcome the weaknesses of either methed used in isola-
tion. By a suitable choice of a weighting factor, CMED can also
handle situations where the characteristics of the input data lic close
to the optimal performance criteria of cither of the two end-member
deconvolution methods, SD or MED.

INTRODUCTION

The fundamental objective of seismic deconvolution is to
reconstruct the reflectivity series with some resolution by
undoing the effects of the propagating source wavelet.
Several deconvolution methods have been proposed in the
geophysical literature, each with its own optimization criteria
and with characteristic assumptions, to compute the filter
coetticients.

Conventional deconvolution methods such as spiking
deconvolution (SD) or predictive deconvolution (Robinson
and Treite!, 1967; 1980) seck to whiten the spectra by impos-
ing restrictions on the phase of the source wavelet to com-

pute the filter coefficients. Minimum-entropy deconvolution
(MED) (Wiggins, 1978; Donoho, 1981) attempts to find a
linear operator that maximizes the spikiness of the reflectiv-
ity, thereby reducing the disorder in the series and hence
minimizing entropy. MED does not assume a minimum-
phasc wavelet and its operator is designed from a multitrace
input, selectively suppressing frequency bands over which
the ratio of coherent signal to random noise is fow.

Real data often violate the assumptions underlying both
MED and SD. However, by merging the two techniques
through a hybrid optimization scheme, termed: constrained
minimum-entropy deconvolution (CMED), one may poten-
tially combine the robustness of spiking deconvolution with
the insensitivity of MED to the input phase characteristics.
The filter coefficients are derived from an optimal combina-
tion of conventional spiking deconvolution and the varimax
criterion of MED. The optimally derived CMED operator
exploits the advantages of the two methods used in isolation
for improved performance.

The intent of this note is simply to propose this nonlinear
hybrid deconvolution technique as one that could prove to be
of practical benefit in certain cases. Our approach at this
stage is heuristic or cmpirical rather than theoretical. Further
experimental and theoretical study, as well as algorithmic
development, are required.

DeconvoLuTION TECHNIQUES

Spiking deconvolution

Conventional deconvolution techniques assume a model in
which the reflectivity is a random and uncorrelated series of
events with a white spectrum. The standard approach in
computing the prediction-error filters involves the use of the
Wiener-Levinson algorithm (Robinson and Treitel, 1967;
Peacock and Treitel, 1969) which requires the explicit com-
putation of the input-trace autocorrelation. The spiking oper-
ator does a good job in the recovery of the earth impulse
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response if that response is nearly white, random and station-
ary, and if the seismic wavelet is minimum-phase or accu-
rately known (Ziolkowski, 1984). Jurkevics and Wiggins
(1984) observed that spiking deconvolution is robust under a
wide range of refiectivity and signal-distortion conditions
and still remains the universal choice in practice. s success-
ful application, Iike that of any other statistical deconvolu-
tion method, depends on the assumptions made in the devel-
opment of the deconvolution operator.

Minimum-entropy deconvolution

Minimum-entropy deconvolution {Wiggins, 1978; Ooc
and Ulrych, 1979; Donoho, 1981; DeVries and Berkhout
19%4; Sacchi et al., 1994) designs the linear operator which,
when applied to the seismic trace, leaves behind the smallest
number of large spikes consistent with the data. Such an
operator is designed by maximizing some data-simplicity
measure with respect to the filter coefficients. The measure
chosen by Wiggins (1978) is the varimax (or simplicity)
norm defined for a multichannel time series X as:

V(X)= i{i"j /[ x;] (1)

=1 Li=t

where:
Xy Xz X
Xy Xpz Xy |
xo| : - = (X}, X550 000Xy ) @)
Xgy Xgp " Xst

where x;; is the ith sample of the jth trace with § samples and
T iraces, and X represents the single jth trace.

The varimax norm has the property that, for each trace, it
is maximized to V = 1 (V = T, for T traces) when the trace
consists of a single spike of unit amplitude. In general, the
more nonzero spikes of consistent amplitude there are, the
smaller the varimax becomes. The MED normal equations
(Wiggins, 1978), as they stand, are highly nonlinear and, as
such, cannot be solved directly. However, they may be
solved recursively in a fairly straightforward fashion, which
“may not lead to a unigue maximum valse for ¥V but ... leads
to a useful local maximum” (Wiggins, 1978).

Wiggins (1983) noted that MED does not work very well
most of the time and discussed a number of reasons for this.
He also proposed an alternative deconvolution procedure,
“entropy-guided deconvolution”, designed to provide suit-
able deconvolution for real random seismic data and for
wavelets of any phase. A feature of this scheme is that it
approaches Wiener behavior as the probability distribution of
the reflectivity series becomes more Gaussian. Other prob-
lems with MED have been dealt with, for example, by
Donocho (1981), Jurkevics and Wiggins (1984) and Deeming
(1984), chief among them, perhaps, the question of model
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validity: if the reflectivity series within the design window
does not have the minimum-entropy property, i.e., that of a
sparse-spike sequence, then applying an MED-designed
operator tending to produce such a sparse output would be
inappropriate.

Other techniques

Considerable recent theoretical work has been published
on higher-order statistics and blind deconvolution (Mendel,
1991; Lacoume, 1992) and the effects on performance of
such quantities as kurtosis, bandwidth, and duration (White,
1988; Boumahdi and Glangeaud, 1994), which surely will
lead to improvements over such methods as SI¥ and MED.
Indeed, the hybrid method presented here, CMED, is not
intended to eclipse such new and sophisticated methods. The
objectives of this paper are quite limnited and specific: to pre-
sent CMED uas one possible deconvolution method that
might be appropriate in many cases and which may be fairly
readily implemented using software components that are
widely available.

CONSTRAINED MINIMUM-ENTROPHY DECONVOLUTION

Constrained minimum-entropy deconvolution (CMED) is
developed for the purpose of combining the useful properties
of Wiggins MED and Wiener spiking deconvelution. In real
situations we expect the large degree of nonlinearity of the
CMED varimax, coupled with the general instability of
deconvolution and sensitivity to noise, to yield a “bumpy”
objective function, i.e., onc with multiple local minima. As
mentioned earlier, the constrained varimax functional is com-
plicated and its direct solution is a difficult problem.
However, the problem can be solved by using an optimization
scheme like that of Rothman (1985) that avoids the local lin-
earization pitfalls of Wiggins’s (1978) algorithm and searches
for solutions close to the global minimum of the CMED
objective function. The resulting algorithm conveniently
adjusts to any desired combination of MED and Wiener
deconvolution by a suitable choice of weighting factor.

Constrained MED varimax functional

Following from equation (1) and defining the MED filter
output as:

i
Y :Efixk4+l.p (3)

I=1

the MED varimax norm may be written as:
T s K 2
4 2
V(Y) =2 V{y,)= 21 2% ’{Z)’fq} (4)
= k=1

7=l j=1 | k=1

where x;; = input signal, K = number of time samplcs per
trace, T = number of traces, and f , are the L filter coefficients
(filter length).
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Any approach used to maximize V(Y) will lead to the
MED solution. Wiggins (1978) chose the iterative procedure
using the Levinson algorithm. The prediction-error operator
(spiking operator} can be obtained as a solution to the equa-
tion of the form:

i[fm¢u(l—m)—¢u(l)]=0 )

m=1

where ¢, (T) is the autocorrelation of the input at lag T, f,, are
the filter coefficients, and ¢,(7) is the crosscorrelation
between input and desired output. For multitrace cases, an
average autocorrelation is computed for all the traces.
Minimization schemes for the solution of equation (5) using
the conjugate-gradient and gradient algorithms have been
utilized by Wang and Treitel (1973). The approach adopted
here is to minimize the sum of squares of the bracketed terms
of equation (5).

The constrained-varimax norm C(Y) is then obtained by
convex combination of equations (4) and (5), thus:

s K 2
c)=a % 3t 55
(6)

()Y [ F0 (= m)— 6L (1)]

1=l m=1

To ensure convexity: §, (A) + 9, (M) =1; ¢, (W) =0, and 0,
(A) 2 0; ¢, (M) decreasing monotonically on [0,1]and 0 €A <
1, A being a weighting factor expressing relative emphasis on
either term of equation (6). Heuristically, ¢, (A} = 1
—*and ¢, () = A* were chosen simply to be in accord with
the exponent 4 in the varimax norm. By adopting such a con-
vex combination, the solution swings from one extreme, say
that of spiking deconvolution for A%, or A, equal to unity, to
that of MED for A equal to zero. The CMED solution lies, in
general, somewhere between these limits of A. An average
autocorrelation of all the traces was utilized in the computa-
tion of the CMED operator. The only unknown parameters in
equation (6) are the filter coefficients on which the output is
dependent. The solution of the CMED equation lends itself
particularly to optimization routines which require function
evaluation only.

Optimization approach

Owing to the complexity of the CMED objective function
and inadequate knowledge of the optimal filter coefficients,
application of direct-search methods (e.g., Box et al.. 1969)
in the maximization is preferable. The optimization routine
chosen, due to Bremermann (1970), is essentially an uncon-
strained global optimization routine, guaranteed to converge
for fourth-order functions {Bremermann and Lam, 1970). At
an iteration point x(%), the method generates a random direc-
tion vector r (with Gaussian distribution) and determines the
restriction of the varimax function C to the line x(? + Ar.
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Fig. 1. Input and output after deconvolution {model A): (a) sparse
reflectivity series, (b) minimum-phase source wavelet.

This restriction is a fourth-order polynomial in the parameter
A, whose coefficients are determined by five-point
Lagrangian interpolation. The derivative is a third-order
polynomial which has either one or three real roots. These
roots are computed by Cardan’s formula (Bremermann,
1970).

If there is one root, A, the procedure is iterated from the
point with a new random direction, provided C(x) + A ) <
C(A), If this inequality does not hold, the method is iterated
from x® with a new random direction. When there are three
r00ts, A}, Ay, A, then the functional is evaluated at x + & 7,
A + Ayr, and €% + A;r. The procedure is iterated from the
point where the value of C is minimum, continuing until a
predetermined number of iterations have been run or C has
decreased to a prescribed value, The initial guess need not be
close to the optimum filter values, though a closer gucss
implies fewer iterations to the optimum.

The convergence propertics of the method have been ana-
lyzed by Bremermann (1970). And, in a comparative assess-
ment of five least-squares inversion methods, Hoversten et
al. (1982) noted that for Bremermann’s method the number
of function evaluations used in the iterative procedure is
independent of the number of parameters (filter coefficients)
describing the system, while the other four routines (ridge
regression, spiral algorithm, Peckam’s method, simplex
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Fig. 1. (c) output after applying SD, {d) output aher applying MED,
(e) output after applying CMED.

method) require more function evaluations as the number of
parameters increases.

In the design of the CMED algorithm, the approach taken
is to use the direct-search (global optimization) routine due
to Bremermann (1970) to investigate the constrained vari-
max norm over some broad region of interest by a predeter-
mined number of iterations, usually 10 to 3(. At this stage,
the parameters constitute a good initial guess for local opti-
mization for faster convergence and efficient investigation.
The output of the [ocal optimization routine after successful
convergence is the CMED operator. In most of the success-
ful runs, 300 to 400 iterations were carried out.

As can be seen from equation (6), the CMED norm has the
weighting factor as an input parameter. As will be seen later,
the phase-resolution characteristics of the propagating
wavelet are dependent on this parameter. A user-friendly
algorithm developed for CMED allows for flexible input of
the weighting factor, choice of the design window, and
heuristic estimation of filter length.
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Fig. 1. (N residual wavelet after SD, (g) residual wavelet after MED,
{h} residual wavelet after CMED. Amplitudes in all figures are arbi-
trarily normalized to [-100%, 100%)].

EvALUATION OF CMED PERFORMANCE

The performance criterion for the three deconvolution
methods was established following the procedure by
Jurkevics and Wiggins (1984). Synthetic data with known
reflectivities and wavelets were deconvolved using all three
techniques. The degree of pulse compression was assessed
by a residual wavelet, a measure of average waveform
remaining in the seismogram after deconvolution. This mea-
sure was utilized by Jurkevics and Wiggins (1984) in their
critique of seismic deconvolution methods and we deem it
satisfactory for purposes of this paper. This residual wavelet
is defined in the frequency domain by division as:

residual wavelet (@) = processed output () %

true reflectivity ()
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and, in practice, a small constant (whitc noisc) can be added
to the denominator to avoid instabilities caused by division
by very small numbers.

For ideal deconvolution, the time-domain residual would
be a spike, i.e.: output = reflectivity. And the residual for no
deconvolution would be the original source wavelet, i.e.: out-
put = input. In real situations, the residual resides between
the two extremes. Any phase distortions introduced in the
propagating wavelet can be discerned by examining the out-
put residual wavelet. Thus the residual wavelet is a good
indicator of the degree of pulse compression and phase dis-
tortion or restoration.

Synthetic data results

A comparative study was performed on the three methods,
SD, MED and CMED. The synthetic data contain different
source wavelets: minimum-phase, band-limited zero-phase
and band-limited phase-shifted (90°) wavelets. We used
sparse and dense reflectivities that were thought to simulate
well a variety of field conditions. The three methods were
applied to the input traces and the outputs examined. In most
cases the residual wavelet was examined as it gave a good
indication of the performance of the particular deconvolution
method in question. Several models that included different
distributions of reflectivity and different source wavelets
were run {Boadu, 1987) and wc here present a few examples
of the most relevant results.
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Fig. 2. Input and output after deconvolution (model B1): (a) dense
reflectivity series, (b} band-limited zero-phase source wavelet.
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Example I, model Al. — Model Al consists of a sparse
reflectivity series (Fig. la) convolved with a minimum-phase
source wavelet (Fig. Ib). Outputs after deconvolution using
the three methods are illustrated in Figures Ic, d, and ¢. Each
method does a reasonable job of compressing the source
wavelet and reproducing the original reflectivity. MED gave
the best result, as the characteristics of the input model were
consistent with the assumptions made in obtaining the MED
operator. The residual wavelets extracted after deconvolution
are shown in Figures 1f, g, and h. Suppression of side-lobes
is a desirable characteristic in situations where phase resolu-
tion is vital, as in high-resolution seismic and in the explo-
ration for stratigraphic traps (e.g., Rictsch, 1982), and in this
case MED and CMED do a better job than SD.

A symmetric filter (Wiggins, 1978) of length 16 points
was uscd as the initial guess in both MED and CMED, with a
weighting factor of 0.05. The CMED residual wavelet shows
lower frequencies as well as a polarity reversal. The lower
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Fig. 2. (c) residual wavelet after SD, (d) residual wavelet after MED,
{e) residual wavelet after CMED.

December 1997



CONSTRAINED MINEIMUM-ENTROPY NECONYOLUTION

100
a

a
=2 |
= 1 r
-4

-1000 50 100 150 260 250

TRAVELTIME (ms)
100

AMPLITUDE
o
L |

-1G0

4} | 5r0 100 160 260 250
TRAVELTIME (ms)

Fig. 3. Input and ocutput after deconvolution {model B2): (a) dense
reflectivity series, (b) 90° — phase-shifted source waveiet,

frequencies may be attributable to the nature of the objective
function used in the CMED algorithm. The combination of
the fourth-order varimax functional and the second-order
autocorrelation tends to reduce both numerical instabilities
and the cstimation variance, contributing to the robustness of
CMED. The time delay observed in both MED and CMED is
likely due to the filler length chosen. This may pose a poten-
tial problem for the two methods. However the problem is
partly solved by trial runs 1o determine the filter length that
maximizes and tapers the objective functions.

The polarity reversal seen is characteristic of MED-like
norms: i.e., that the polarity of the output “spikes” cannot be
predicted as they do not affect the maximization of the vari-
max norm (Wiggins, 1978). (Compare, for example, Figs. 5b
and 7b.) In gencral, the cutput will appear reversed if, on
average, negalive lobes arc larger than positive ones.
Wiggins (1978} suggests applying a polarity reversal to oul-
puts afier careful comparison of outputs and inputs,

Example 2, model Bl. — Model Bl is a dense reflectivity
series (Fig. Za) convoived with a band-limited zero-phase
wavelet shown in Figurc 2b. The nature of this reflectivity
series simulates very well real data situations with rellectors
occurring, on average, about cvery 4.5 ms (Jain, 1986). The
wavelet is of a trapezoidal passband of 12 Hz to 55 Hz, with
taper zones from ¥ to 12 Hz and 55 to 65 Hz. This frequency
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Fig. 3. (c) residual wavelet after SD, (d) residual wavelet after MED,
(e) residual wavelet after CMED.

band has been reported by Jain (1986) as representative of
much data collected in Alberta over the last several years.
This test wavelet is somewhat noisy because it was band-
pass-filtered in order that its frequency content should match
that specified.

Figures 2c, d, and e show the residual wavelets after pro-
cessing with the three methods. The SD residual wavelet is a
reasonable representation of the source wavelet; however,
the CMED residual wavelet (weighting factor of 0.33) is sig-
nificantly better and appears the best (the most spike-like) of
the three. Side lobes are fairly well suppressed and there is
considerable pulse compression. The MED residual wavelet,
the worst of the three, is phase-distorted and unstable.

Example 3, model B2. — This model consists of a dense
reflectivity series convolved with a phasc-shifted wavelet
{Figs. 3a and b). The residual wavelet was examined after
application of each of the three methods. Figures 3¢, d, and
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Fig. 4. Residual wavelet after deconvolution of input data {model 81)
with 5% white noise added: {a} SD, {b) MED, {c} CMED.

are the outputs of the residual wavelets. A filter length of 8
points was used with a weighting factor of 0.12 for the
CMED. The CMED provides a better and cleaner residual
wavelet with reasonable suppression of sidelobes, whereas
the MED and SD residual wavelets show considerable phasc
distortion,

Effects of noise

Noise of any form degrades most inversion or deconvolu-
tion processes as it leaves stratigraphic imprints unclear.
Berkhout (1977) indicated that even low-level noise is detri-
mental to reliable wavelet deconvolulion using a one-sided
operator. Any procedure which attempts to suppress noise or
reduce amplification of noise is thus desirable. Figure 4
shows residual wavelets after processing using the three
deconvolution methods. The input model is Model Bl with
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Fig. 5. Residual wavelel, using 5-point filter, after: (a) SD, () MED,
(c) CMED.

additive noise (5% white noise). This random noise is of uni-
form distribution with the maximum amplitude as a percent-
age of the largest signal amplitude.

We observe that the CMED (Fig. 4c) has done the best job
in terms of reducing noisc amplification. The average wave-
form after SD has the highest noise level. Waveform distor-
tion is seen in the MED residual wavelet.

Effect of filter length on CMED output

As previously mentiened the Iength of the deconvolution
operator is often a sensitive parameter in MED-like deconvol-
ution schemes. Figures 5, 6, and 7 show the residual
wavelets after processing of Model Bl with 5-point, 20-point,
and 30-point filters, respectively. In Figure 5, each method
shows adequate pulse compression and sufficient side-lobe
suppression, the best 5-point result being for CMED. In the
2(0-point case (Fig. 6) the pulses are generally worse, being
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Fig. 6. Residual wavelet, using 20-point filter, after: (a) SD. (b) MED,
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broader than for the S-point case (Fig. 5). In this case,
CMED and SD are about equally good, MED being worst. In
Figure 7, the continuing degradation of output with filter
length is clearly seen, One may also observe that SD is not
nearly as sensitive to filter length as MED or CMED is.
Better results are obtained from CMED using shorter filter
lengths.

Effects of weighting factor on CMED output

In the design of the CMED operator, a weighting factor in
the form of a parameter is introduced in the CMED objective
fimction. A suitable choice of this parameter allows the solu-
tion to swing from SD to MED. Figure 8 shows the residual
wavelet outputs (Model B1) varying the weighing factor,
values being 0.3, 0.35, and 0.4. The gradual shift in phase
with the weighting factor can be seen. An optimum value of
0.35 sets the phase close to zero. The weighting factor is thus
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Fig. 7. Residual wavelet, using 30-point filter, after: (a) SD, (b) MED,
{c) CMED.

a critical parameter in phase selection. By examining output
for various values of the weighting factor, one can find a rea-
sonable value. The choice of the weighting factor at present
is heuristic. However, a more appropriate way is to include
the weighting factor as a parameter to be estimated by opti-
mization of the CMED objective functional.

Amplitude spectra

Figure 9 shows one cxample of amplitude spectra before
and after deconvolution of noisy input data (Model B1 cor-
rupted with 5% noise). The noise dominates in the high-fre-
quency portion of the spectrum as incoherent signal. SD
blows up these incohcrent signals considerably,. MED
reduces signal amplitude in low-frequency portions of the
spectrum and boosts, to a lesser ¢xtent, the high-frequency
incoherent signals. CMED (Fig. 9¢) amplifies some of the
low-frequency signal and, relative to SD and MED suppresses
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Fig. 8. Effect of varying the weighting factor (CMED} on phase of the
residual wavelet: {a) 0.3, (b) 0.35, (¢) 0.4.

the high-frequency incoherent signals. Again, this property
of CMED is advantageous as amplification of such high-fre-
quency noise may become a problem, particularly at late
reflection times. Such noise may also cause serious errors in
phase treatment produced by spiking deconvolution
{Berkhout, 1977).

Real data

A field shot record obtained from Veritas Seismic Ltd.
{Calgary) was used to test the performance of CMED on real
data, Figure 10a shows the unprocessed data. Figures 10b, c,
and d show the processed data using SD, MED and CMED,
respectively. The deconvolution parameters for the spiking
deconvolution were: an operator length of 22 points, a white-
noise level of 0.5%, and a design window of length between
400 and 650 ms. The MED was processed with an operator
length of 22 points while the CMED had a filter length of 22
points and a weighting factor of 0.1.
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Fig. 9. Amplitude spectra before and after decenvolution (5% noise)
for: (a) SD, (b) MED, (c) CMED.

Some improvements of the CMED over the other two
methods can be discerned from the gathers. The reflectors
have been clearly isolated with better resolution and signal-
to-noise ratio. The main reflectors which exhibit some dou-
blets in the MED and SD sections show as single events on
the CMED sections.

Applicability of CMED

One of the prime aims of most standard deconvolution
techniques is to produce a common-midpoint (CMP) stacked
section in which each trace can be considered as the earth’s
primary reflectivity series convolved with a zero-phasc
wavelet. We thus expect the residual wavelet to be zero-
phase, though more often it is not. The variety of reasons
which give rise to this phase distortion have been described
by Levy and Oldenburg (1982). Stability of phase becomes
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Flg. 10. Real data example: (a) unprocessed data.

important when looking for stratigraphic traps, whose detec-
tion is dependent on local changes in lithology. These
detailed changes in lithology are expressed on the processed
section as lateral changes in amplitude and phase of the
earth’s reflectivity. In seismic inversion procedures, slight

phase difference
ual wavelet can
traces and sonic

(Jain, 1986).
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s between the source wavelet and the resid-
caus¢c small time shifts between inverted
logs and can introduce some inaccuracies in

inversion results in the vicinity of large velocity contrasts
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A common technique to corrcct for residual phase of
the wavelet is to phase shift a number of scismograms in
the vicinity of a well until the best match between the syn-
thetic seismogram and the phase-shifted data is found. As
commented by Levy and Oldenburg {1987), the mathe-
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matical model of constant phase shift may not be appro-
priate in all instances. The CMED adopts a simple
approach of phase shifting the residual phase to be zero
by varying the weighting factor. Usually two or three tri-
als give the required results. For the models run, the
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Fig. 10. Real data example: (c) processad data (MED).

CMED has the property of stabilizing the residual
wavelet, reducing sidelobes and eliminating residual
phase.

Suppression of side lobes is very important in enhancing
reflection events. Rietsch (1982) favors designing

CIEG

deconvolution filters that place more emphasis on the reduc-
tion of side lobes of the filtered wavelet than on sharpening
of the deconvolved pulse for normal sampling rate. An
appealing feature of CMED is its apparently greater ten-
dency to reduce side lobes.
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Fig. 10. Real data example: (d) processed data (CMED).
CONCLUSIONS

A hybrid technique of scismic deconvolution termed con-
strained minimum-entropy deconvolution (CMED) has been
proposed as a combination of spiking and minimum-entropy
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deconvolution. Qutputs from the synthetic data models run
using the three deconvolution methods, were compared. The
conclusion drawn is that CMED can do a better job in some
situations where either MED or SD performs badly. CMED
works reasonably well on the real data presented in this
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paper. More real data sets are needed for testing to establish
the potential of the CMED.

CMED can correct phase errors with a suitable choice of a
weighting factor incorporated in the CMED algorithm. In
general, shorter filter lengths give better performance.
CMED seems to suppress side lobes and increases the signal-
to-noise ratio. In particular, it suppresses frequency bands
with low signal-to-noise ratio and boosts those bands in
which coherent signals dominate. The noise-reduction char-
acteristics of CMED also appear to be positive in the exam-
ples shown. In cases where either MED or SD fails to reduce
the noise amplifications, the CMED does a relatively good
job.

For future work, further processing should be carried out
on real data examples. Initially, test panels can be run to
determine heuristically the best choice of parameters.
However, the optimization process to determine filter param-
eters over particular zones of intcrest could perhaps be auto-
mated by including these parameters as variables to be deter-
mined computationally in the objective function.

Finally, CMED will certainly not universally and perfectly
solve the age-old problems of seismic deconvolution.
However, it seems to perform better in some situations
where the existing or conventional methods fail to provide
satisfactory results.
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