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GRAVITY MODELLING OF SALT DOMES AND PINNACLE REEFS’ 
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ABSTRACT 

Gravity modelling is approached in a slightly different man- 
ner in that the density distribution of the body is continuously 
varying rather than constant. For bodies with cylindrical 
symmetry, the density contrast function is interpolated by 
piece&e ~ontinuow cubic polynomial basis functions between 
thedatapoints. The problemisapproached, followingparasnis 
(1961), by first calculating the gravitational attraction of a 
circular lamina and then integrating this expression over the 
length of the vertical cylinder. Numerical examples are given 
for a hypothetical pinnacle reef and salt dame. 

INTRODUCTION 

Modelling the gravity anomalies due to geologic fea- 
tures has been traditionally achieved by matching these 
anomalies with the gravitational attractions of simple 
geometric shapes such as spheres and cylinders. For 
example, geological features such as salt domes, reefs 
and igneous plutons have been approximated as cylinders. 
The gravitational attraction of a cylinder is easily calcu- 
lated for points on the axis of the cylinder. For points 
not on that axis, the gravitational attraction is more 
complicated. This research will follow the general steps 
devised by Parasnis (1961). 

In all previous methods that model the gravitational 
attraction of cylindrically symmetrical bodies, the den- 
sity contrast between the host rocks has remained 
constant. This is rarely the case in geological features, 
since density is a function of lithology, mineralogy, 
depth of burial, porosity and other characteristics. This 
fact produces gravity anomalies that are much different 
from those due to cylindrical bodies with constant density. 
Therefore, the provision is made in this paper, follow- 
ing Moon (1981). for density to vary along the radius of 
a cylindrically symmetrical body. The density function 
is also allowed to vary along the length of a vertical 
cylinder. The gravity anomaly due to a cylindrically 

symmetrical body with density varying as a function of 
radius r and depth z is then calculated. 

In the following sections, numerical examples for a 
hypothetical salt dome and pinnacle reef are given. The 
density contrast in these examples varies with the COOT- 
dinate variables r and z in a cylindrical coordinate system. 
The density function is interpolated from data points by 
using a piecewise continuous cubic polynomial basis 
function. This makes it possible to calculate the gravi- 
tational attraction analytically between the data points 
and then sum all these results to obtain the total 
gravitational attraction. 

GEOLOGY OF SALT DOMES AND PINNACLE REEFS 

In this section, the geology of the two hypothetical 
examples is discussed. Both these geological features 
have cylindrical symmetry and the potential to contain 
oil and gas, so that they have very important implica- 
tions in hydrocarbon exploration. 

SALT DOMES 

Salt domes are diapiric structures involving the upward 
flow of low-density salt. The circular nature of these 
features is an indication of the fact that salt domes form 
as a result of upward flow independent oftectonic activity. 
The flanks of these structures provide excellent trap- 
ping mechanisms for oil and gas. 

For salt domes to form, thick accumulations of salt 
must be overlain by sediments of higher density. The 
exact origin of such a large quantity of salt is not fully 
understood; however, it is thought that some kind of 
closed basin of sea water that evaporates is the major 
mechanism involved. The salt is then buried under 
unconsolidated Mesozoic and Cenozoic sediments. 
Nettleton (1934) showed that salt can flow because of 
the gravitative instability present when salt is overlain 
by a thick sequence of higher-density sediments. The 
key here is that salt begins to flow at relatively low 
temperatures and pressures. Whereas the density of the 
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salt (2.2 g/cm) does not vary with depth, that of the 
overlying sediments increases because of increasing 
compaction. This fact causes a positive density con- 
trast at very shallow depths, and an increasingly nega- 
tive density contrast between the salt and the surrounding 
sediments as depth increases. Therefore, in modelling 
the gravitational attraction of a cylindrically symmetri- 
cal vertical salt dome, we must use a cylinder whose 
density is a function of depth rather than one whose 
density is constant. 

The result of the upwelling salt is a structure that 
truncates beds and also causes a general antiformal 
trapping mechanism. Since salt is a very tight barrier to 
hydrocarbon migration, many traps are formed in the 
bowed-up beds that surround the salt dome, Traps can 
also be found in the antiformal structure above the 
dome if impermeable cap rocks with positive density 
contrasts are present. 

PINNACLEREEFS 

The other numerical model considered in this study is 
that of a cylindrically symmetrical pinnacle reef. Reefs 
of this kind were discovered by Chevron in 1975 as a 
result of geophysical exploration (specifically, seismic 
surveys) in the West Pembina area near Edmonton. 
These “Zeta Lake” reefs are Upper Devonian in age 
and are composed predominantly of dolomite, 

Many wells drilled by Chevron in the West Pembina 
area have intersected isolated “Zeta Lake” reefs 
(Chevron, 1979). A type section well has been logged 
and cored and analysis of these data shows that quartz 
silt, anhydrite, andclayareall present in minoramounts, 
with dolomite being the main constituent. Oil has migrated 
into the porous reef structures and has been trapped by 
the impermeable sediments overlying the reef. The very 
fossiliferous dolomite has undergone extreme diage- 
netic alterations which have determined reservoir 
characteristics. The main type of porosity is vuggy and 
the average porosity is I I .5%. Average permeability is 
1.5 D. The general shape and dimensions of the reefs 
are shown in Figure 3a. 

B(X Z) 

------ / 2 
Fig. 1. Cylindrical cc-xdinate system used for calculating the gravitational 
attraction Of a circular lamina and of a right vertical cylinder. 

THEORY 

Todeveloptheexpressionforthegravitationalattrac- 
tion of a vertical cylinder whose density is not uniform 
throughout, we first consider a circular lamina whose 
surface density varies with its radius r (see Fig. I). 

Following Parasnis (1961), the attraction of the ele- 
ment rdrdd is Gccrlrdrd+ 

5’ 
along the line S. The vertical component is 

G.crlrdrd+ 1 
s2 s 

The anomaly due to the entire lamina is 
n4 ~~Opydld+ 

Also, from the geometry of Figure I 
+ 0 

Note that 5 = J+zrpcorr+p’ 

and +=+[p P,icOlai+P;ico.ri+~P~,cora~+~~. I 
ol- 

+=+i-[;, P,k~~.i+P,~l~~~.i+~ PJkOSn,+a] 

(I) 

(2a) 

(2b) 

This is because S is the Green’s function satisfying 
the Laplace equation, and hence can be written in terms 
oftheLegendrefunctions(Morseand Fesbach, 19S3, p. 
589,748). P’. (cos 7) are the derivatives of the Legendre 
polynomials. The integrals from 0 to 2n of the even- 
order derivatives (P,‘, P,‘, Pd’ etc.) are zero since these 
polynomials contain only odd powers ofcos +. Therefore, 
the only contributing terms to the integral involve 
Pzn+ ,’ (cos v). From the elementary expression for 
p. (cm Y) 

p;“,,i~osxi=f: l-lJL b3,5” 14n-2k+11”2” “ca.‘“~*‘+ 
lwo 2~1(!l2”-**)! (3) 

Since there is a singularity at S = 0 (where the mate- 
rial point coincides with the observation point), we 
must divide the gravitational attraction formulation into 
tworegions: p * aandp s a,whereaistheradiusofthe 
circular lamina. For p 3 a 

a,,=6’6’“~(P;“*,(~~~Il~)d’d~ (4) 

The general term of gravitational attraction becomes 
from (3) 
ng”,=Glx’..‘li-o11.3 .~14n-*k+li 2,K1(2n-2L,! /ai~“~,,,,~“~‘~~~~.~*~~~~~~ 

such that AQ = f i: Ag., I~* us, (6) 

Nowfork = n, thegeneraltermonlyinvolves~~. Let 
Ag,, denote Ag,, = Ag,,. 

boo =“F ,-l,Y~~~lZn+l, 
FA”+’ “_o 2” n ,jw”+‘drji; (7) 

=,z*-,~ -,1/r rr’+p’,*d, 

Terms with k = n I involve x2. Denoting these by 
Ag, and applying the binomial expansion gives 
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Similarly, terms with k = n 2 involve x4. 
A.& = *w ~‘~~rdrv’z+P2).:d, (9) 

The integrals in (7), (S), and (9) can be evaluated 
analytically (Moon, 1981). The other terms in (6) for 
k = n - 3, n - 4, etc. can be obtained similarly. 

Consider now the case p < a, which was not included 
in the work by Moon (1981). In substituting for l/S’ in 
(l),therearetwodistinctcases:O G r G pandp G r G a. 
Therefore the integral in (1) with respect to r becomes 

[=;iP +Jf 

The first integral on the right hand side is the case we 
have just evaluated, and equations (7), (8) and (9) can 
be used to evaluate it. The second integral must be 
evaluated by substituting (2b) into (I) for l/S?. This 
gives 

A% = Gzf /‘“dd Pi.., ,w,g d r d + 
P 0 

with the general term from (3) 
2, 0 Allnh=G*XI..I,P ,-I/ 1.3~.~14”-2k+li 

2,1(!,2”-2k)! 
~p”;~“~y’” ,!a;) 

Proceeding as before 
Ned =,,,,f wl~3~~‘lZn+ll 

la 
.-w&dr (11) “;O 

i’ 
2 = 2xrGI .Irlrlr’+p’i~.d, 

Ag =‘5-azi* 2 2 t 
d’rrvr’+p+d, (12) 

A(I* =s G,.f.4,,,~W.,&, (13) 

The total attraction for p G a is the sum of (7), (8) and 
(9) (with the upper limit of integration being p instead of 
a with (II), (12) and (13). Note that the integrands in 
each case have exactly the same form. 

For a cylindrical model we replace u(r) by p(r, z) and 
integrate with respect to z for the length of the cylinder 
(from ZI to zJ. The density function p(r, z) is a polyno- 
mial in r and z. Expressions for Ag,, Ag,, and A& 
become 

~rro=zrt~‘~lpp,r,I)r,r.+p2iild1d, (14) 

Agl = ~O”f~,” Plr,z~r’Lr’+p~~*zd Id r (15) 

Ag. =~.‘j’~(~,.,,~l,~+,~i~,~,dr (16) 

The reason why only Ag,, Ag, and Ag, have been 
calculated is that numerical testing has shown that the 
infinite series (6) is a very rapidly converging series. 

INTERPOLATION AND NUMERICAL EXAMPLES 

ONE-DIMENSIONAL INTERPOLATION 
The expressions in equations (7), (8), (9), (ll), (12) 

and (13) all involve the integral of u(r) with respect to r. 
In practice we do not know the form of u(r) and there- 

fore cannot integrate it. However, we can represent 
o(r) by using continuous basis functions if we have 
some knowledge of the density at points throughout the 
circular lamina. Cubic splines will be the type of piece- 
wise continuous basis functions used to interpolate the 
density function. 

Given a set of data points [ri, u(s)], i = 0, I, 2.., 
N, we can develop cubic polynomials in r in each model 
interval (h. r:+ ,). By requiring that these cubits and 
their first derivatives match at each ofthe N 1 interior 
points, we can completely determine each of the cubic 
splines in each interval (ri;, r,,,). We need only 
specify some arbitrary end conditions on the polynomi- 
als at r,, and rN. The density function is now repre- 
sented by a cubic polynomial between each data point 
and the next, and thus can be integrated analytically in 
all the intervals (fir s+~). Note that since the cubic 
splines and their derivatives match at each data point, 
the density function assumes a very smooth nature. 
Consequently, the integrals in equations (7), (S), (9). 
(I I), (12) and (13)involve u(r) anda simplefunctionofr, 
so they can be evaluated analytically for each of the 
N - 1 intervals and summed to obtain the values afAg,, 
Ag, and Ag,. 

TWO-DIMENSIONAL INTERPOLATION 

To evaluate the expressions in equations (14), (15) 
and (16) we need to integrate the two-dimensional den- 
sity distribution p(r, z). The data required to interpolate 
this function are a two-dimensional set: [ri, zj, p(s, 
~$1, i = 0, I, 2, N,j = 0, I, 2,. M. By using the 
same analysis described above for one-dimensional 
interpolation, splines can be obtained in the r and z 
variables. The tensor product of these two multiplied 
by a characteristic constant for each cell (two-dimensional 
interval)gives the two-dimensionalcubic spline. There- 
fore, the density function p(r, z) becomes a polynomial 
in r and z in each cell (G, tit,; zj, zj.,). Thus the 
integrandsin(l4), (IS) and (16)can be evaluatedanalyti- 
tally for each cell, and all these results can be summed 
to obtain the final result for Ag,, A&, etc. 

NUMERICAL EXAMPLES 

The model used for the salt domes is adapted from 
Nettleton (1962). His model includes a high-density cap 
rock such as anhydrite or limestone, which is present 
above the salt dome and produces a small positive 
gravity anomaly at the centre of the broad negative 
anomaly. The gravity anomaly due to a cylindrical salt 
dome was calculated by using solid angles before the 
use of computers became prevalent. 

A numerical model of the gravitational attraction of a 
hypothetical cylindrical salt dome is shown in Figure 
2a. 

The salt dome has a continuously varying density 
distribution p(r, z) which was interpolated by cubic 
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x.... d = 2.5a 

+.... d = 2.0a 
A~... d = I.58 
cl... d = ,.cla 

Fig. 28. Gravity anomaly due lo a cylindrically symmetrical hypothetical salt dome in various geometries 

DENSITY CONTRAST AT R = 0 

Fig. 2b. Density contrast profile as a function of depth. 

t 
P(density contrast) 

(gm/cc) 

Fig. 2-z. General shape of salt dome 
and its density contrast surface plot. 
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a = 0.0 N 1.6 km 
t = up to 140 m 

Fig. 38. Diagrammatic section of a Zeta Lake pinnacle reef 

+ d-2a 
A d-l .4a 

+z-+ 

Fig. 3b. Gravity anomalies produced by cylindrically symmetrical hypothetical pinnacle reef in various geometries. 

:: 
d DENSITY CONTRAST FIT R = 0 

z 
0.08 0.24 0.32 or.40 O.UB d. 56 0.m 6.12 0.m 

DEPTH IKMI 

Fig. 3~. Density contrast profile as a function of depth 
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Fig. 3d. General shape of hypothetical pinnacle reef and its density contrast surface plot 

spline functions described earlier. The spline interpo- 
lates between the data points [(ri. zj, p(ri, zj)l, 
i = 0, I, N,j = 0, 1,2, M. In practice, thedata 
needed to interpolate the density function can be obtained 
from well data. Equations (14). (15) and (16) were used 
to calculate the gravity anomaly. 

Figure 2(b) shows the density contrast profile at the 
centre of the salt dome (r = 0) as a function of depth. 
Figure 2(c) shows the density contrast surface plot of 
the salt dome. 

Figures 3(b)-3(d) show the gravity anomaly ofa hypo- 
thetical cylindrically symmetrical pinnacle reef, its den- 
sity contrast profile and its density contrast surface 
plot. Once again cubic splines were used to interpolate 
P@, a. 

CONCLUSION 

The numerical models shown in Figures 2 and 3 dem- 
onstrate that it is possible to calculate the gravitational 
attraction ofcylindrically symmetrical objects with con- 
tinuously varyingdensityfunctions. Wecouldalso have 
interpolated the density function with a piecewise con- 
tinuous basis function to accommodate any jump 
discontinuitiesinthedensitydistribution. Cubicpolyno- 
mials were used in this study to interpolate the density 
functions of these models; however, one can also use 
other types of piecewise continuous basis functions. 
One possible practical application of this method could 

be in the exploration for structures that contain hydro- 
carbons, such as salt domes and reefs. 
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